ترغب بنشر مسار تعليمي؟ اضغط هنا

Spin-polarized quasiparticle transport in exchange-split superconducting aluminum on europium sulfide

131   0   0.0 ( 0 )
 نشر من قبل Detlef Beckmann
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on nonlocal spin transport in mesoscopic superconducting aluminum wires in contact with the ferromagnetic insulator europium sulfide. We find spin injection and long-range spin transport in the regime of the exchange splitting induced by europium sulfide. Our results demonstrate that spin transport in superconductors can be manipulated by ferromagnetic insulators, and opens a new path to control spin currents in superconductors.



قيم البحث

اقرأ أيضاً

Spin/magnetisation relaxation and coherence times, respectively T_1 and T_2, initially defined in the context of nuclear magnetic resonance (NMR), are general concepts applicable to a wide range of systems, including quantum bits [1-4]. At first glan ce, these ideas might seem to be irrelevant to conventional Bardeen-Cooper-Schrieffer (BCS) superconductors, as the BCS superconducting ground state is a condensate of Cooper pairs of electrons with opposite spins (in a singlet state) [5]. It has recently been demonstrated, however, that a non-equilibrium magnetisation can appear in the quasiparticle (i.e. excitation) population of a conventional superconductor, with relaxation times on the order of several nanoseconds [6-10]. This raises the question of the spin coherence time of quasiparticles in superconductors and whether this can be measured through resonance experiments analogous to NMR and electron spin resonance (ESR). We have performed such measurements in aluminium and find a quasiparticle spin coherence time of 95+/-20ps.
We present microwave measurements of a high quality factor superconducting resonator incorporating two aluminum nanobridge Josephson junctions in a loop shunted by an on-chip capacitor. Trapped quasiparticles (QPs) shift the resonant frequency, allow ing us to probe the trapped QP number and energy distribution and to quantify their lifetimes. We find that the trapped QP population obeys a Gibbs distribution above 75 mK, with non-Poissonian trapping statistics. Our results are in quantitative agreement with the Andreev bound state model of transport, and demonstrate a practical means to quantify on-chip QP populations and validate mitigation strategies in a cryogenic environment.
We investigate transport properties of junctions between two spin-split superconductors linked by a spin-polarized tunneling barrier. The spin-splitting fields in the superconductors (S) are induced by adjacent ferromagnetic insulating (FI) layers wi th arbitrary magnetization. The aim of this study is twofold: On the one hand, we present a theoretical framework based on the quasiclassical Greens functions to calculate the Josephson and quasiparticle current through the junctions in terms of the different parameters characterizing it. Our theory predicts qualitative new results for the tunneling differential conductance, $dI/dV$, when the spin-splitting fields of the two superconductors are non-collinear. We also discuss how junctions based on FI/S can be used to realize anomalous Josephson junctions with a constant geometric phase shift in the current-phase relation. As a result, they may exhibit spontaneous triplet supercurrents in the absence of a phase difference between the S electrodes. On the other hand, we show results of planar tunneling spectroscopy of a EuS/Al/Al$_2$O$_3$/EuS/Al junction and use our theoretical model to reproduce the obtained $dI/dV$ curves. Comparison between theory and experiment reveals information about the intrinsic parameters of the junction, such as the size of the superconducting order parameter, spin-splitting fields and spin relaxation, and also about properties of the two EuS films, as their morphology, domain structure, and magnetic anisotropy.
We report on a study of thermal Hall conductivity k_xy in the superconducting state of CeCoIn_5. The scaling relation and the density of states of the delocalized quasiparticles, both obtained from k_xy, are consistent with d-wave superconducting sym metry. The onset of superconductivity is accompanied by a steep increase in the thermal Hall angle, pointing to a striking enhancement in the quasiparticle mean free path. This enhancement is drastically suppressed in a very weak magnetic field. These results highlight that CeCoIn_5 is unique among superconductors. A small Fermi energy, a large superconducting gap, a short coherence length, and a long mean free path all indicate that CeCoIn_5 is clearly in the superclean regime (E_F/Delta<<l/xi), in which peculiar vortex state is expected.
Quantum bits (qubits) with long coherence times are an important element for the implementation of medium- and large-scale quantum computers. In the case of superconducting planar qubits, understanding and improving qubits quality can be achieved by studying superconducting planar resonators. In this Paper, we fabricate and characterize coplanar waveguide resonators made from aluminum thin films deposited on silicon substrates. We perform three different substrate treatments prior to aluminum deposition: One chemical treatment based on a hydrofluoric acid clean, one physical treatment consisting of a thermal annealing at 880 degree Celsius in high vacuum, one combined treatment comprising both the chemical and the physical treatments. We first characterize the fabricated samples through cross-sectional tunneling electron microscopy acquiring electron energy loss spectroscopy maps of the samples cross sections. These measurements show that both the chemical and the physical treatments almost entirely remove native silicon oxide from the substrate surface and that their combination results in the cleanest interface. We then study the quality of the resonators by means of microwave measurements in the quantum regime, i.e., at a temperature T~10 mK and at a mean microwave photon number $langle n_{textrm{ph}} rangle sim 1$. In this regime, we find that both surface treatments independently improve the resonators intrinsic quality factor and that the highest quality factor is obtained for the combined treatment, $Q_{textrm{i}} sim 0.8$ million. Finally, we find that the TLS quality factor averaged over a time period of 3 h is $sim 3$ million at $langle n_{textrm{ph}} rangle sim 10$, indicating that substrate surface engineering can potentially reduce the TLS loss below other losses such as quasiparticle and vortex loss.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا