ﻻ يوجد ملخص باللغة العربية
We report measurements of in-plane electrical and thermal transport properties in the limit $T rightarrow 0$ near the unconventional quantum critical point in the heavy-fermion metal $beta$-YbAlB$_4$. The high Kondo temperature $T_K$ $simeq$ 200 K in this material allows us to probe transport extremely close to the critical point, at unusually small values of $T/T_K < 5 times 10^{-4}$. Here we find that the Wiedemann-Franz law is obeyed at the lowest temperatures, implying that the Landau quasiparticles remain intact in the critical region. At finite temperatures we observe a non-Fermi liquid T-linear dependence of inelastic scattering processes to energies lower than those previously accessed. These processes have a weaker temperature dependence than in comparable heavy fermion quantum critical systems, and suggest a new temperature scale of $T sim 0.3 K$ which signals a sudden change in character of the inelastic scattering.
Quantum critical points (QCPs) are widely accepted as a source of a diverse set of collective quantum phases of matter. A central question is how the order parameters of phases near a QCP interact and determine the fundamental character of the critic
Magnetic-field-induced phase transitions are investigated in the frustrated gapped quantum paramagnet Rb$_{2}$Cu$_{2}$Mo$_3$O$_{12}$ through dielectric and calorimetric measurements on single-crystal samples. It is clarified that the previously repor
Heavy fermion systems, and other strongly correlated electron materials, often exhibit a competition between antiferromagnetic (AF) and singlet ground states. Using exact Quantum Monte Carlo (QMC) simulations, we examine the effect of impurities in t
Noethers theorem is one of the fundamental laws of physics, relating continuous symmetries and conserved currents. Here we explore the role of Noethers theorem at the deconfined quantum critical point (DQCP), which is the quantum phase transition bey
We report a quantum Monte Carlo study of the phase transition between antiferromagnetic and valence-bond solid ground states in the square-lattice $S=1/2$ $J$-$Q$ model. The critical correlation function of the $Q$ terms gives a scaling dimension cor