ﻻ يوجد ملخص باللغة العربية
We consider the case of highly noisy data coming from two different antennas, each data set containing a damped signal with the same frequency and decay factor but different amplitude, phase, starting point and noise. Formally, we treat the first data set as real numbers and the second one as purely imaginary and we add them together. This complex set of data is analyzed using Pade Approximations applied to its Z-transform. Complex conjugate poles are representative of the signal; other poles represent the noise and this property allows to identify the signal even in strong noise. The product of the residues of the complex conjugate poles is related to the relative phase of the signal in the two channels and is purely imaginary when the signal amplitudes are equal. Examples are presented on the detection of a fabricated gravitational wave burst received by two antennas in the presence of either white or highly colored noise.
AMIGO - The Astrodynamical Middle-frequency Interferometric GW (Gravitation-Wave) Observatory is a first-generation mid-frequency GW mission bridging the sensitivity gap between the high-frequency GW detectors and low-frequency space GW detectors. In
With the advanced LIGO and Virgo detectors taking observations the detection of gravitational waves is expected within the next few years. Extracting astrophysical information from gravitational wave detections is a well-posed problem and thoroughly
We present a new ${it{gating}}$ method to remove non-Gaussian noise transients in gravitational wave data. The method does not rely on any a-priori knowledge on the amplitude or duration of the transient events. In light of the character of the newly
Existing coherent network analysis techniques for detecting gravitational-wave bursts simultaneously test data from multiple observatories for consistency with the expected properties of the signals. These techniques assume the output of the detector
Fluctuations in the local Newtonian gravitational field present a limit to high precision measurements, including searches for gravitational waves using laser interferometers. In this work, we present a model of this perturbing gravitational field an