ترغب بنشر مسار تعليمي؟ اضغط هنا

Influence of temperature dependent shear viscosity on elliptic flow at back- and forward rapidities in ultrarelativistic heavy-ion collisions

546   0   0.0 ( 0 )
 نشر من قبل Pasi Huovinen
 تاريخ النشر 2014
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We explore the influence of a temperature-dependent shear viscosity over entropy density ratio $eta/s$ on the azimuthal anisotropies v_2 and v_4 of hadrons at various rapidities. We find that in Au+Au collisions at full RHIC energy, $sqrt{s_{NN}}=200$ GeV, the flow anisotropies are dominated by hadronic viscosity at all rapidities, whereas in Pb+Pb collisions at the LHC energy, $sqrt{s_{NN}}=2760$ GeV, the flow coefficients are affected by the viscosity both in the plasma and hadronic phases at midrapidity, but the further away from midrapidity, the more dominant the hadronic viscosity is. We find that the centrality and rapidity dependence of the elliptic and quadrangular flows can help to distinguish different parametrizations of $(eta/s)(T)$. We also find that at midrapidity the flow harmonics are almost independent of the decoupling criterion, but show some sensitivity to the criterion at back- and forward rapidities.



قيم البحث

اقرأ أيضاً

We investigate the influence of a temperature-dependent shear viscosity over entropy density ratio eta/s on the transverse momentum spectra and elliptic flow of hadrons in ultrarelativistic heavy-ion collisions. We find that the elliptic flow in sqrt (s_NN) = 200 GeV Au+Au collisions at RHIC is dominated by the viscosity in the hadronic phase and in the phase transition region, but largely insensitive to the viscosity of the quark-gluon plasma (QGP). At the highest LHC energy, the elliptic flow becomes sensitive to the QGP viscosity and insensitive to the hadronic viscosity.
Equilibration of highly excited baryon-rich matter is studied within the microscopic model calculations in A+A collisions at energies of BES, FAIR and NICA. It is shown that the system evolution from the very beginning of the collision can be approxi mated by relativistic hydrodynamics, although the hot and dense nuclear matter is not in local equilibrium yet. During the evolution of the fireball the extracted values of energy density, net baryon and net strangeness densities are used as an input to Statistical Model (SM) in order to calculate temperature $T$, chemical potentials $mu_B$ and $mu_S$, and entropy density $s$ of the system. Also, they are used as an input for the box with periodic boundary conditions to investigate the momentum correlators in the infinite nuclear matter. Shear viscosity $eta$ is calculated according to the Green-Kubo formalism. At all energies, shear viscosity to entropy density ratio shows minimum at time corresponding to maximum baryon density. The ratio dependence on $T, mu_B, mu_S$ is investigated for both in- and out of equilibrium cases.
Data from the Large Hadron Collider on elliptic flow correlations at low and high $p_T$ from Pb+Pb collisions at $sqrt{s_{NN}} = 5.02$~TeV are analyzed and interpreted in the framework of the HYDJET++ model. This model allows us to describe simultane ously the region of both low and high transverse momenta and, therefore, to reproduce the experimentally observed nontrivial centrality dependence of elliptic flow correlations. The origin of the correlations between low and high-$p_T$ flow components in peripheral lead-lead collisions is traced to correlations of particles in jets.
112 - S. Ryu , J.-F. Paquet , C. Shen 2015
We investigate the consequences of a nonzero bulk viscosity coefficient on the transverse momentum spectra, azimuthal momentum anisotropy, and multiplicity of charged hadrons produced in heavy ion collisions at LHC energies. The agreement between a r ealistic 3D hybrid simulation and the experimentally measured data considerably improves with the addition of a bulk viscosity coefficient for strongly interacting matter. This paves the way for an eventual quantitative determination of several QCD transport coefficients from the experimental heavy ion and hadron-nucleus collision programs.
A simple approach is proposed allowing actual calculations of the preequilibrium dynamics in ultrarelativistic heavy-ion collisions to be performed for a far-from-equilibrium initial state. The method is based on the phenomenological macroscopic equa tions that describe the relaxation dynamics of the energy-momentum tensor and are motivated by Boltzmann kinetics in the relaxation-time approximation. It gives the possibility to match smoothly a nonthermal initial state to the hydrodynamics of the quark gluon plasma. The model contains two parameters, the duration of the prehydrodynamic stage and the initial value of the relaxation-time parameter, and allows one to assess the energy-momentum tensor at a supposed time of initialization of the hydrodynamics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا