ﻻ يوجد ملخص باللغة العربية
We discuss dissipative chaos showing symmetries in the phase space and nonclassical statistics for a parametrically driven nonlinear Kerr resonator (PDNR). In this system an oscillatory mode is created in the process of degenerate down-conversion of photons under interaction with a train of external Gaussian pulses. For chaotic regime we demonstrate, that the Poincare section showing a strange attractor, as well as the resonator mode contour plots of the Wigner functions display two-fold symmetry in the phase space. We show that quantum-to-classical correspondence is strongly violated for some chaotic regimes of the PDNR. Considering the second-order correlation function we show that the high-level of photons correlation leading to squeezing in the regular regime strongly decreases if the system transits to the chaotic regime. Thus, observation of the photon-number correlation allows to extract information about the chaotic regime.
We derive fidelity decay and parametric energy correlations for random matrix ensembles where time--reversal invariance of the original Hamiltonian is broken by the perturbation. Like in the case of a symmetry conserving perturbation a simple relation between both quantities can be established.
Mean fidelity amplitude and parametric energy--energy correlations are calculated exactly for a regular system, which is subject to a chaotic random perturbation. It turns out that in this particular case under the average both quantities are identic
We study the competing order and chaos in a first-order quantum phase transition with a high barrier. The boson model Hamiltonian employed, interpolates between its U(5) (spherical) and SU(3) (deformed) limits. A classical analysis reveals regular (c
We study the evolution of the dynamics across a generic first order quantum phase transition in an interacting boson model of nuclei. The dynamics inside the phase coexistence region exhibits a very simple pattern. A classical analysis reveals a robu
Recent years have seen an increasing interest in quantum chaos and related aspects of spatially extended systems, such as spin chains. However, the results are strongly system dependent, generic approaches suggest the presence of many-body localizati