ترغب بنشر مسار تعليمي؟ اضغط هنا

Critical point for the CAF-F phase transition at charge neutrality in bilayer graphene

142   0   0.0 ( 0 )
 نشر من قبل Sergio Pezzini
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on magneto-transport measurements up to 30 T performed on a bilayer graphene Hall bar, enclosed by two thin hexagonal boron nitride flakes. Our high mobility sample exhibits an insulating state at neutrality point which evolves into a metallic phase when a strong in-plane field is applied, as expected for a transition from a canted antiferromagnetic to a ferromagnetic spin ordered phase. For the first time we individuate a temperature-independent crossing in the four-terminal resistance as a function of the total magnetic field, corresponding to the critical point of the transition. We show that the critical field scales linearly with the perpendicular component of the field, as expected from the underlying competition between the Zeeman energy and interaction-induced anisotropies. A clear scaling of the resistance is also found and an universal behavior is proposed in the vicinity of the transition.



قيم البحث

اقرأ أيضاً

The magnetic field-dependent longitudinal and Hall components of the resistivity rho_xx(H) and rho_xy(H) are measured in graphene on silicon dioxide substrates at temperatures from 1.6 K to room temperature. At charge densities near the charge-neutra lity point rho_xx(H) is strongly enhanced and rho_xy(H) is suppressed, indicating nearly equal electron and hole contributions to the transport current. The data are inconsistent with uniformly distributed electron and hole concentrations (two-fluid model) but in excellent agreement with the recent theoretical prediction for inhomogeneously distributed electron and hole regions of equal mobility. At low temperatures and high magnetic fields rho_xx(H) saturates to a value ~h/e^2, with Hall conductivity << e^2/h, which may indicate a regime of localized v = 2 and v = -2 quantum Hall puddles.
We report the experimental observation of strongly enhanced tunneling between graphene bilayers through a WSe$_2$ barrier when the graphene bilayers are populated with carriers of opposite polarity and equal density. The enhanced tunneling increases sharply in strength with decreasing temperature, and the tunneling current exhibits a vertical onset as a function of interlayer voltage at a temperature of 1.5 K. The strongly enhanced tunneling at overall neutrality departs markedly from single-particle model calculations that otherwise match the measured tunneling current-voltage characteristics well, and suggests the emergence of a many-body state with condensed interbilayer excitons when electrons and holes of equal densities populate the two layers.
Using the semiclassical quantum Boltzmann equation (QBE), we numerically calculate the DC transport properties of bilayer graphene near charge neutrality. We find, in contrast to prior discussions, that phonon scattering is crucial even at temperatur es below 40K. Nonetheless, electron-electron scattering still dominates over phonon collisions allowing a hydrodynamic approach. We introduce a simple two-fluid hydrodynamic model of electrons and holes interacting via Coulomb drag and compare our results to the full QBE calculation. We show that the two-fluid model produces quantitatively accurate results for conductivity, thermopower, and thermal conductivity.
The most celebrated property of the quantum spin Hall effect is the presence of spin-polarized counter-propagating edge states. This novel edge state configuration has also been predicted to occur in graphene when spin-split electron- and hole-like L andau levels are forced to cross at the edge of the sample. In particular, a quantum spin Hall analogue has been predicted at { u}=0 in bilayer graphene if the ground state is a spin ferromagnet. Previous studies have demonstrated that the bilayer { u}=0 state is an insulator in a perpendicular magnetic field, though the exact nature of this state has not been identified. Here we present measurements of the { u}=0 state in a dual-gated bilayer graphene device in tilted magnetic field. The application of an in-plane magnetic field and perpendicular electric field allows us to map out a full phase diagram of the { u}=0 state as a function of experimentally tunable parameters. At large in-plane magnetic field we observe a quantum phase transition to a metallic state with conductance of order 4e^2/h, consistent with predictions for the ferromagnet.
Graphene grown epitaxially on SiC, close to the charge neutrality point (CNP), in an orthogonal magnetic field shows an ambipolar behavior of the transverse resistance accompanied by a puzzling longitudinal magnetoresistance. When injecting a transve rse current at one end of the Hall bar, a sizeable non local transverse magnetoresistance is measured at low temperature. While Zeeman spin effect seems not to be able to justify these phenomena, some dissipation involving edge states at the boundaries could explain the order of magnitude of the non local transverse magnetoresistance, but not the asymmetry when the orientation of the orthogonal magnetic field is reversed. As a possible contribution to the explanation of the measured non local magnetoresistance which is odd in the magnetic field, we derive a hydrodynamic approach to transport in this system, which involves particle and hole Dirac carriers, in the form of charge and energy currents. We find that thermal diffusion can take place on a large distance scale, thanks to long recombination times, provided a non insulating bulk of the Hall bar is assumed, as recent models seem to suggest in order to explain the appearance of the longitudinal resistance. In presence of the local source, some leakage of carriers from the edges generates an imbalance of carriers of opposite sign, which are separated in space by the magnetic field and diffuse along the Hall bar generating a non local transverse voltage.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا