ﻻ يوجد ملخص باللغة العربية
We provide a model for the prediction of the electronic and magnetic configurations of ferromagnetic Fe after an ultrafast decrease or increase of magnetization. The model is based on the well-grounded assumption that, after the ultrafast magnetization change, the system achieves a partial thermal equilibrium. With statistical arguments it is possible to show that the magnetic configurations are qualitatively different in the case of reduced or increased magnetization. The predicted magnetic configurations are then used to compute the dielectric response at the 3p (M) absorption edge, which can be related to the changes observed in the experimental T-MOKE data. The good qualitative agreement between theory and experiment offers a substantial support to the existence of an ultrafast increase of magnetisation, which has been fiercely debated in the last years.
A coupled atomistic spin and lattice dynamics approach is developed which merges the dynamics of these two degrees of freedom into a single set of coupled equations of motion. The underlying microscopic model comprises local exchange interactions bet
Element specific ultrafast demagnetization was studied in Fe$_{1-x}$Ni$_{x}$ alloys, covering the concentration range between $0.1<x<0.9$. For all compositions, we observe a delay in the onset of Ni demagnetization relative to the Fe demagnetization.
We report on optically induced, ultrafast magnetization dynamics in the Heusler alloy $mathrm{Co_{2}FeAl}$, probed by time-resolved magneto-optical Kerr effect. Experimental results are compared to results from electronic structure theory and atomist
A hierarchical multiscale approach to model the magnetization dynamics of ferromagnetic ran- dom alloys is presented. First-principles calculations of the Heisenberg exchange integrals are linked to atomistic spin models based upon the stochastic Lan
Identifying an efficient pathway to change the order parameter via a subtle excitation of the coupled high-frequency mode is the ultimate goal of the field of ultrafast phase transitions. This is an especially interesting research direction in magnet