ترغب بنشر مسار تعليمي؟ اضغط هنا

Landau-Zener evolution under weak measurement: Manifestation of the Zeno effect under diabatic and adiabatic measurement protocols

113   0   0.0 ( 0 )
 نشر من قبل Wolfgang Belzig
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The time evolution and the asymptotic outcome of a Landau-Zener-Stueckelberg-Majorana (LZ) process under continuous weak non-selective measurement is analyzed. We compare two measurement protocols in which the populations of either the adiabatic or the non-adiabatic levels are (continuously and weakly) monitored. The weak measurement formalism, described using a Gaussian Kraus operator, leads to a time evolution characterized by a Markovian dephasing process, which, in the non-adiabatic measurement protocol is similar to earlier studies of LZ dynamics in a dephasing environment. Casting the problem in the language of measurement theory makes it possible for us to compare diabatic and adiabatic measurement scenarios, to consider engineered dephasing as a control device and to examine the manifestation of the Zeno effect under the different measurement protocols. In particular, under measurement of the non- adiabatic populations, the Zeno effect is manifested not as a freezing of the measured system in its initial state, but rather as an approach to equal asymptotic populations of the two diabatic states. This behavior can be traced to the way by which the weak measurement formalism behaves in the strong measurement limit, with a built-in relationship between measurement time and strength.



قيم البحث

اقرأ أيضاً

The evolution of a quantum system is supposed to be impeded by measurement of an involved observable. This effect has been proven indistinguishable from the effect of dephasing the systems wave function, except in an individual quantum system. The co herent dynamics, on an optical E2 line, of a single trapped ion driven by light of negligible phase drift has been alternated with interrogations of the internal ion state. Retardation of the ions nutation, equivalent to the quantum Zeno effect, is demonstrated in the statistics of sequences of probe-light scattering on and off detections, the latter representing back-action-free measurement.
319 - Chr. Wunderlich , Chr. Balzer , 2001
A quantum system being observed evolves more slowly. This `quantum Zeno effect is reviewed with respect to a previous attempt of demonstration, and to subsequent criticism of the significance of the findings. A recent experiment on an {it individual} cold trapped ion has been capable of revealing the micro-state of this quantum system, such that the effect of measurement is indeed discriminated from dephasing of the quantum state by either the meter or the environment.
We study the Quantum Zeno Effect (QZE) induced by continuous partial measurement in the presence of short-correlated noise in the system Hamiltonian. We study the survival probability and the onset of the QZE as a function of the measurement strength , and find that, depending on the noise parameters, the quantum Zeno effect can be enhanced or suppressed by the noise in different regions of the parameter space. Notably, the conditions for the enhancement of the QZE are different when determined by the short-time or long-time behavior of the survival probability, or by the measurement strength marking the onset of the quantum Zeno regime.
Uncertainty relations are one of the fundamental principles in physics. It began as a fundamental limitation in quantum mechanics, and today the word {it uncertainty relation} is a generic term for various trade-off relations in nature. In this lette r, we improve the Kennard-Robertson uncertainty relation, and clarify how much coherence we need to implement quantum measurement under conservation laws. Our approach systematically improves and reproduces the previous various refinements of the Kennard-Robertson inequality. As a direct consequence of our inequalities, we improve a well-known limitation of quantum measurements, the Wigner-Araki-Yanase-Ozawa theorem. This improvement gives an asymptotic equality for the necessary and sufficient amount of coherence to implement a quantum measurement with the desired accuracy under conservation laws.
As the minituarization of electronic devices, which are sensitive to temperature, grows apace, sensing of temperature with ever smaller probes is more important than ever. Genuinely quantum mechanical schemes of thermometry are thus expected to be cr ucial to future technological progress. We propose a new method to measure the temperature of a bath using the weak measurement scheme with a finite dimensional probe. The precision offered by the present scheme not only shows similar qualitative features as the usual Quantum Fisher Information based thermometric protocols, but also allows for flexibility over setting the optimal thermometric window through judicious choice of post selection measurements.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا