ترغب بنشر مسار تعليمي؟ اضغط هنا

Ultra accurate collaborative information filtering via directed user similarity

226   0   0.0 ( 0 )
 نشر من قبل Jianguo Liu
 تاريخ النشر 2014
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

A key challenge of the collaborative filtering (CF) information filtering is how to obtain the reliable and accurate results with the help of peers recommendation. Since the similarities from small-degree users to large-degree users would be larger than the ones opposite direction, the large-degree users selections are recommended extensively by the traditional second-order CF algorithms. By considering the users similarity direction and the second-order correlations to depress the influence of mainstream preferences, we present the directed second-order CF (HDCF) algorithm specifically to address the challenge of accuracy and diversity of the CF algorithm. The numerical results for two benchmark data sets, MovieLens and Netflix, show that the accuracy of the new algorithm outperforms the state-of-the-art CF algorithms. Comparing with the CF algorithm based on random-walks proposed in the Ref.7, the average ranking score could reach 0.0767 and 0.0402, which is enhanced by 27.3% and 19.1% for MovieLens and Netflix respectively. In addition, the diversity, precision and recall are also enhanced greatly. Without relying on any context-specific information, tuning the similarity direction of CF algorithms could obtain accurate and diverse recommendations. This work suggests that the user similarity direction is an important factor to improve the personalized recommendation performance.



قيم البحث

اقرأ أيضاً

The recommender system is one of the most promising ways to address the information overload problem in online systems. Based on the personal historical record, the recommender system can find interesting and relevant objects for the user within a hu ge information space. Many physical processes such as the mass diffusion and heat conduction have been applied to design the recommendation algorithms. The hybridization of these two algorithms has been shown to provide both accurate and diverse recommendation results. In this paper, we proposed two similarity preferential diffusion processes. Extensive experimental analyses on two benchmark data sets demonstrate that both recommendation and accuracy and diversity are improved duet to the similarity preference in the diffusion. The hybridization of the similarity preferential diffusion processes is shown to significantly outperform the state-of-art recommendation algorithm. Finally, our analysis on network sparsity show that there is significant difference between dense and sparse system, indicating that all the former conclusions on recommendation in the literature should be reexamined in sparse system.
Due to the development of graph neural network models, like graph convolutional network (GCN), graph-based representation learning methods have made great progress in recommender systems. However, the data sparsity is still a challenging problem that graph-based methods are confronted with. Recent works try to solve this problem by utilizing the side information. In this paper, we introduce easily accessible textual information to alleviate the negative effects of data sparsity. Specifically, to incorporate with rich textual knowledge, we utilize a pre-trained context-awareness natural language processing model to initialize the embeddings of text nodes. By a GCN-based node information propagation on the constructed heterogeneous graph, the embeddings of users and items can finally be enriched by the textual knowledge. The matching function used by most graph-based representation learning methods is the inner product, this linear operation can not fit complex semantics well. We design a predictive network, which can combine the graph-based representation learning with the matching function learning, and demonstrate that this predictive architecture can gain significant improvements. Extensive experiments are conducted on three public datasets and the results verify the superior performance of our method over several baselines.
Giving or recommending appropriate content based on the quality of experience is the most important and challenging issue in recommender systems. As collaborative filtering (CF) is one of the most prominent and popular techniques used for recommender systems, we propose a new clustering-based CF (CBCF) method using an incentivized/penalized user (IPU) model only with ratings given by users, which is thus easy to implement. We aim to design such a simple clustering-based approach with no further prior information while improving the recommendation accuracy. To be precise, the purpose of CBCF with the IPU model is to improve recommendation performance such as precision, recall, and $F_1$ score by carefully exploiting different preferences among users. Specifically, we formulate a constrained optimization problem, in which we aim to maximize the recall (or equivalently $F_1$ score) for a given precision. To this end, users are divided into several clusters based on the actual rating data and Pearson correlation coefficient. Afterwards, we give each item an incentive/penalty according to the preference tendency by users within the same cluster. Our experimental results show a significant performance improvement over the baseline CF scheme without clustering in terms of recall or $F_1$ score for a given precision.
Two main challenges in recommender systems are modeling users with heterogeneous taste, and providing explainable recommendations. In this paper, we propose the neural Attentive Multi-Persona Collaborative Filtering (AMP-CF) model as a unified soluti on for both problems. AMP-CF breaks down the user to several latent personas (profiles) that identify and discern the different tastes and inclinations of the user. Then, the revealed personas are used to generate and explain the final recommendation list for the user. AMP-CF models users as an attentive mixture of personas, enabling a dynamic user representation that changes based on the item under consideration. We demonstrate AMP-CF on five collaborative filtering datasets from the domains of movies, music, video games and social networks. As an additional contribution, we propose a novel evaluation scheme for comparing the different items in a recommendation list based on the distance from the underlying distribution of tastes in the users historical items. Experimental results show that AMP-CF is competitive with other state-of-the-art models. Finally, we provide qualitative results to showcase the ability of AMP-CF to explain its recommendations.
In this paper, we propose a spreading activation approach for collaborative filtering (SA-CF). By using the opinion spreading process, the similarity between any users can be obtained. The algorithm has remarkably higher accuracy than the standard co llaborative filtering (CF) using Pearson correlation. Furthermore, we introduce a free parameter $beta$ to regulate the contributions of objects to user-user correlations. The numerical results indicate that decreasing the influence of popular objects can further improve the algorithmic accuracy and personality. We argue that a better algorithm should simultaneously require less computation and generate higher accuracy. Accordingly, we further propose an algorithm involving only the top-$N$ similar neighbors for each target user, which has both less computational complexity and higher algorithmic accuracy.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا