ﻻ يوجد ملخص باللغة العربية
GRAVITY is the second generation VLT Interferometer (VLTI) instrument for high-precision narrow-angle astrometry and phase-referenced interferometric imaging. The laser metrology system of GRAVITY is at the heart of its astrometric mode, which must measure the distance of 2 stars with a precision of 10 micro-arcseconds. This means the metrology has to measure the optical path difference between the two beam combiners of GRAVITY to a level of 5 nm. The metrology design presents some non-common paths that have consequently to be stable at a level of 1 nm. Otherwise they would impact the performance of GRAVITY. The various tests we made in the past on the prototype give us hints on the components responsible for this error, and on their respective contribution to the total error. It is however difficult to assess their exact origin from only OPD measurements, and therefore, to propose a solution to this problem. In this paper, we present the results of a semi-empirical modeling of the fibered metrology system, relying on theoretical basis, as well as on characterisations of key components. The modeling of the metrology system regarding various effects, e.g., temperature, waveguide heating or mechanical stress, will help us to understand how the metrology behave. The goals of this modeling are to 1) model the test set-ups and reproduce the measurements (as a validation of the modeling), 2) determine the origin of the non-common path errors, and 3) propose modifications to the current metrology design to reach the required 1nm stability.
GRAVITY is a second generation VLTI instrument, combining the light of four telescopes and two objects simultaneously. The main goal is to obtain astrometrically accurate information. Besides correctly measured stellar phases this requires the knowle
The VLTI instrument GRAVITY combines the beams from four telescopes and provides phase-referenced imaging as well as precision-astrometry of order 10 microarcseconds by observing two celestial objects in dual-field mode. Their angular separation can
The VLTI instrument GRAVITY will provide very powerful astrometry by combining the light from four telescopes for two objects simultaneously. It will measure the angular separation between the two astronomical objects to a precision of 10 microarcsec
The Canadian Astro-H Metrology System (CAMS) on the Hitomi X-ray satellite is a laser alignment system that measures the lateral displacement (X/Y) of the extensible optical bench (EOB) along the optical axis of the hard X-ray telescopes (HXTs). The
Long baseline laser interferometers used for gravitational wave detection have proven to be very complicated to control. In order to have sufficient sensitivity to astrophysical gravitational waves, a set of multiple coupled optical cavities comprisi