ﻻ يوجد ملخص باللغة العربية
The size of large cliff failures may be described in several ways, for instance considering the horizontal eroded area at the cliff top and the maximum local retreat of the coastline. Field studies suggest that, for large failures, the frequencies of these two quantities decrease as power laws of the respective magnitudes, defining two different decay exponents. Moreover, the horizontal area increases as a power law of the maximum local retreat, identifying a third exponent. Such observation suggests that the geometry of cliff failures are statistically similar for different magnitudes. Power laws are familiar in the physics of critical systems. The corresponding exponents satisfy precise relations and are proven to be universal features, common to very different systems. Following the approach typical of statistical physics, we propose a scaling hypothesis resulting in a relation between the three above exponents: there is a precise, mathematical relation between the distributions of magnitudes of erosion events and their geometry. Beyond its theoretical value, such relation could be useful for the validation of field catalogs analysis. Pushing the statistical physics approach further, we develop a numerical model of marine erosion that reproduces the observed failure statistics. Despite the minimality of the model, the exponents resulting from extensive numerical simulations fairly agree with those measured on the field. These results suggest that the mathematical theory of percolation, which lies behind our simple model, can possibly be used as a guide to decipher the physics of rocky coast erosion and could provide precise predictions to the statistics of cliff collapses.
In bootstrap percolation it is known that the critical percolation threshold tends to converge slowly to zero with increasing system size, or, inversely, the critical size diverges fast when the percolation probability goes to zero. To obtain higher-
In some systems, the connecting probability (and thus the percolation process) between two sites depends on the geometric distance between them. To understand such process, we propose gravitationally correlated percolation models for link-adding netw
The out-of-time-ordered correlator (OTOC) is central to the understanding of information scrambling in quantum many-body systems. In this work, we show that the OTOC in a quantum many-body system close to its critical point obeys dynamical scaling la
The dynamics of sliding friction is mainly governed by the frictional force. Previous studies have shown that the laboratory-scale friction is well described by an empirical law stated in terms of the slip velocity and the state variable. The state v
It is known that an engine with ideal efficiency ($eta =1$ for a chemical engine and $e = e_{rm Carnot}$ for a thermal one) has zero power because a reversible cycle takes an infinite time. However, at least from a theoretical point of view, it is po