ترغب بنشر مسار تعليمي؟ اضغط هنا

Galois differential algebras and categorical discretization of dynamical systems

123   0   0.0 ( 0 )
 نشر من قبل Piergiulio Tempesta
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A categorical theory for the discretization of a large class of dynamical systems with variable coefficients is proposed. It is based on the existence of covariant functors between the Rota category of Galois differential algebras and suitable categories of abstract dynamical systems. The integrable maps obtained share with their continuous counterparts a large class of solutions and, in the linear case, the Picard-Vessiot group.



قيم البحث

اقرأ أيضاً

We show that non-linear Schwarzian differential equations emerging from covariance symmetry conditions imposed on linear differential operators with hypergeometric function solutions, can be generalized to arbitrary order linear differential operator s with polynomial coefficients having selected differential Galois groups. For order three and order four linear differential operators we show that this pullback invariance up to conjugation eventually reduces to symmetric powers of an underlying order-two operator. We give, precisely, the conditions to have modular correspondences solutions for such Schwarzian differential equations, which was an open question in a previous paper. We analyze in detail a pullbacked hypergeometric example generalizing modular forms, that ushers a pullback invariance up to operator homomorphisms. We expect this new concept to be well-suited in physics and enumerative combinatorics. We finally consider the more general problem of the equivalence of two different order-four linear differential Calabi-Yau operators up to pullbacks and conjugation, and clarify the cases where they have the same Yukawa couplings.
The framework of dynamical C*-algebras for scalar fields in Minkowski space, based on local scattering operators, is extended to theories with locally perturbed kinetic terms. These terms encode information about the underlying spacetime metric, so t he causality relations between the scattering operators have to be adjusted accordingly. It is shown that the extended algebra describes scalar quantum fields, propagating in locally deformed Minkowski spaces. Concrete representations of the abstract scattering operators, inducing this motion, are known to exist on Fock space. The proof that these representers also satisfy the generalized causality relations requires, however, novel arguments of a cohomological nature. They imply that Fock space representations of the extended dynamical C*-algebra exist, involving linear as well as kinetic and pointlike quadratic perturbations of the field.
When discussing consequences of symmetries of dynamical systems based on Noethers first theorem, most standard textbooks on classical or quantum mechanics present a conclusion stating that a global continuous Lie symmetry implies the existence of a t ime independent conserved Noether charge which is the generator of the action on phase space of that symmetry, and which necessarily must as well commute with the Hamiltonian. However this need not be so, nor does that statement do justice to the complete scope and reach of Noethers first theorem. Rather a much less restrictive statement applies, namely that the corresponding Noether charge as an observable over phase space may in fact possess an explicit time dependency, and yet define a constant of the motion by having a commutator with the Hamiltonian which is nonvanishing, thus indeed defining a dynamical conserved quantity. Furthermore, and this certainly within the Hamiltonian formulation, the converse statement is valid as well, namely that any dynamical constant of motion is necessarily the Noether charge of some symmetry leaving the systems action invariant up to some total time derivative contribution. The present contribution revisits these different points and their consequences, straightaway within the Hamiltonian formulation which is the most appropriate for such issues. Explicit illustrations are also provided through three general but simple enough classes of systems.
We analyze the behavior of quantum dynamical entropies production from sequences of quantum approximants approaching their (chaotic) classical limit. The model of the quantized hyperbolic automorphisms of the 2-torus is examined in detail and a semi- classical analysis is performed on it using coherent states, fulfilling an appropriate dynamical localization property. Correspondence between quantum dynamical entropies and the Kolmogorov-Sinai invariant is found only over time scales that are logarithmic in the quantization parameter.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا