ترغب بنشر مسار تعليمي؟ اضغط هنا

The Relation Between SFR and Stellar Mass for Galaxies at 3.5 $le zle$ 6.5 in CANDELS

111   0   0.0 ( 0 )
 نشر من قبل Brett Salmon
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Distant star-forming galaxies show a correlation between their star formation rates (SFR) and stellar masses, and this has deep implications for galaxy formation. Here, we present a study on the evolution of the slope and scatter of the SFR-stellar mass relation for galaxies at $3.5leq zleq 6.5$ using multi-wavelength photometry in GOODS-S from the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS) and Spitzer Extended Deep Survey. We describe an updated, Bayesian spectral-energy distribution fitting method that incorporates effects of nebular line emission, star formation histories that are constant or rising with time, and different dust attenuation prescriptions (starburst and Small Magellanic Cloud). From $z$=6.5 to $z$=3.5 star-forming galaxies in CANDELS follow a nearly unevolving correlation between stellar mass and SFR that follows SFR $sim$ $M_star^a$ with $a = 0.54 pm 0.16$ at $zsim 6$ and $0.70 pm 0.21$ at $zsim 4$. This evolution requires a star formation history that increases with decreasing redshift (on average, the SFRs of individual galaxies rise with time). The observed scatter in the SFR-stellar mass relation is tight, $sigma(log mathrm{SFR}/mathrm{M}_odot$ yr$^{-1})< 0.3 - $ 0.4 dex, for galaxies with $log M_star/mathrm{M}_odot > 9$ dex. Assuming that the SFR is tied to the net gas inflow rate (SFR $sim$ $dot{M}_mathrm{gas}$), then the scatter in the gas inflow rate is also smaller than 0.3$-$0.4 dex for star-forming galaxies in these stellar mass and redshift ranges, at least when averaged over the timescale of star formation. We further show that the implied star formation history of objects selected on the basis of their co-moving number densities is consistent with the evolution in the SFR-stellar mass relation.



قيم البحث

اقرأ أيضاً

We investigate the nature of the relation among stellar mass, star-formation rate, and gas-phase metallicity (the M$_*$-SFR-Z relation) at high redshifts using a sample of 260 star-forming galaxies at $zsim2.3$ from the MOSDEF survey. We present an a nalysis of the high-redshift M$_*$-SFR-Z relation based on several emission-line ratios for the first time. We show that a M$_*$-SFR-Z relation clearly exists at $zsim2.3$. The strength of this relation is similar to predictions from cosmological hydrodynamical simulations. By performing a direct comparison of stacks of $zsim0$ and $zsim2.3$ galaxies, we find that $zsim2.3$ galaxies have $sim0.1$ dex lower metallicity at fixed M$_*$ and SFR. In the context of chemical evolution models, this evolution of the M$_*$-SFR-Z relation suggests an increase with redshift of the mass-loading factor at fixed M$_*$, as well as a decrease in the metallicity of infalling gas that is likely due to a lower importance of gas recycling relative to accretion from the intergalactic medium at high redshifts. Performing this analysis simultaneously with multiple metallicity-sensitive line ratios allows us to rule out the evolution in physical conditions (e.g., N/O ratio, ionization parameter, and hardness of the ionizing spectrum) at fixed metallicity as the source of the observed trends with redshift and with SFR at fixed M$_*$ at $zsim2.3$. While this study highlights the promise of performing high-order tests of chemical evolution models at high redshifts, detailed quantitative comparisons ultimately await a full understanding of the evolution of metallicity calibrations with redshift.
We reliably extend the stellar mass-size relation over $0.2leq z leq2$ to low stellar mass galaxies by combining the depth of Hubble Frontier Fields (HFF) with the large volume covered by CANDELS. Galaxies are simultaneously modelled in multiple band s using the tools developed by the MegaMorph project, allowing robust size (i.e., half-light radius) estimates even for small, faint, and high redshift galaxies. We show that above 10$^7$M$_odot$, star-forming galaxies are well represented by a single power law on the mass-size plane over our entire redshift range. Conversely, the stellar mass-size relation is steep for quiescent galaxies with stellar masses $geq 10^{10.3}$M$_odot$ and flattens at lower masses, regardless of whether quiescence is selected based on star-formation activity, rest-frame colours, or structural characteristics. This flattening occurs at sizes of $sim1$kpc at $zleq1$. As a result, a double power law is preferred for the stellar mass-size relation of quiescent galaxies, at least above 10$^7$M$_odot$. We find no strong redshift dependence in the slope of the relation of star-forming galaxies as well as of high mass quiescent galaxies. We also show that star-forming galaxies with stellar masses $geq$10$^{9.5}$M$_odot$ and quiescent galaxies with stellar masses $geq10^{10.3}$M$_odot$ have undergone significant size growth since $zsim2$, as expected; however, low mass galaxies have not. Finally, we supplement our data with predominantly quiescent dwarf galaxies from the core of the Fornax cluster, showing that the stellar mass-size relation is continuous below 10$^7$M$_odot$, but a more complicated functional form is necessary to describe the relation.
The galaxy stellar mass function (GSMF) at high-z provides key information on star-formation history and mass assembly in the young Universe. We aimed to use the unique combination of deep optical/NIR/MIR imaging provided by HST, Spitzer and the VLT in the CANDELS-UDS, GOODS-South, and HUDF fields to determine the GSMF over the redshift range 3.5<z<7.5. We utilised the HST WFC3/IR NIR imaging from CANDELS and HUDF09, reaching H~27-28.5 over a total area of 369 arcmin2, in combination with associated deep HST ACS optical data, deep Spitzer IRAC imaging from the SEDS programme, and deep Y and K-band VLT Hawk-I images from the HUGS programme, to select a galaxy sample with high-quality photometric redshifts. These have been calibrated with more than 150 spectroscopic redshifts in the range 3.5<z<7.5, resulting in an overall precision of sigma_z/(1+z)~0.037. We have determined the low-mass end of the high-z GSMF with unprecedented precision, reaching down to masses as low as M*~10^9 Msun at z=4 and ~6x10^9 Msun at z=7. We find that the GSMF at 3.5<z<7.5 depends only slightly on the recipes adopted to measure the stellar masses, namely the photo-z, the SFHs, the nebular contribution or the presence of AGN on the parent sample. The low-mass end of the GSMF is steeper than has been found at lower redshifts, but appears to be unchanged over the redshift range probed here. Our results are very different from previous GSMF estimates based on converting UV galaxy luminosity functions into mass functions via tight M/L relations. Integrating our evolving GSMF over mass, we find that the growth of stellar mass density is barely consistent with the time-integral of the SFR density over cosmic time at z>4. These results confirm the unique synergy of the CANDELS+HUDF, HUGS, and SEDS surveys for the discovery and study of moderate/low-mass galaxies at high redshifts.
We show that the mass-metallicity relation observed in the local universe is due to a more general relation between stellar mass M*, gas-phase metallicity and SFR. Local galaxies define a tight surface in this 3D space, the Fundamental Metallicity Re lation (FMR), with a small residual dispersion of ~0.05 dex in metallicity, i.e, ~12%. At low stellar mass, metallicity decreases sharply with increasing SFR, while at high stellar mass, metallicity does not depend on SFR. High redshift galaxies, up to z~2.5 are found to follow the same FMR defined by local SDSS galaxies, with no indication of evolution. The evolution of the mass-metallicity relation observed up to z=2.5 is due to the fact that galaxies with progressively higher SFRs, and therefore lower metallicities, are selected at increasing redshifts, sampling different parts of the same FMR. By introducing the new quantity mu_alpha=log(M*)-alpha log(SFR), with alpha=0.32, we define a projection of the FMR that minimizes the metallicity scatter of local galaxies. The same quantity also cancels out any redshift evolution up to z~2.5, i.e, all galaxies have the same range of values of mu_0.32. At z>2.5, evolution of about 0.6 dex off the FMR is observed, with high-redshift galaxies showing lower metallicities. The existence of the FMR can be explained by the interplay of infall of pristine gas and outflow of enriched material. The former effect is responsible for the dependence of metallicity with SFR and is the dominant effect at high-redshift, while the latter introduces the dependence on stellar mass and dominates at low redshift. The combination of these two effects, together with the Schmidt-Kennicutt law, explains the shape of the FMR and the role of mu_0.32. The small metallicity scatter around the FMR supports the smooth infall scenario of gas accretion in the local universe.
We present a robust calibration of the 1.4GHz radio continuum star formation rate (SFR) using a combination of the Galaxy And Mass Assembly (GAMA) survey and the Faint Images of the Radio Sky at Twenty-cm (FIRST) survey. We identify individually dete cted 1.4GHz GAMA-FIRST sources and use a late-type, non-AGN, volume-limited sample from GAMA to produce stellar mass-selected samples. The latter are then combined to produce FIRST-stacked images. This extends the robust parametrisation of the 1.4GHz-SFR relation to faint luminosities. For both the individually detected galaxies and our stacked samples, we compare 1.4GHz luminosity to SFRs derived from GAMA to determine a new 1.4GHz luminosity-to-SFR relation with well constrained slope and normalisation. For the first time, we produce the radio SFR-M* relation over 2 decades in stellar mass, and find that our new calibration is robust, and produces a SFR-M* relation which is consistent with all other GAMA SFR methods. Finally, using our new 1.4GHz luminosity-to-SFR calibration we make predictions for the number of star-forming GAMA sources which are likely to be detected in the upcoming ASKAP surveys, EMU and DINGO.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا