ترغب بنشر مسار تعليمي؟ اضغط هنا

Robert W. Zwanzig: Formulated nonequilibrium statistical mechanics

234   0   0.0 ( 0 )
 نشر من قبل David Chandler
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

This article is a brief Retrospective on the life and work of Robert W. Zwanzig, who formulated nonequilibrium statistical mechanics and who passed away in May of this year.



قيم البحث

اقرأ أيضاً

157 - F. Y. Wu 2010
Professor Chen Ning Yang has made seminal and influential contributions in many different areas in theoretical physics. This talk focuses on his contributions in statistical mechanics, a field in which Professor Yang has held a continual interest for over sixty years. His Masters thesis was on a theory of binary alloys with multi-site interactions, some 30 years before others studied the problem. Likewise, his other works opened the door and led to subsequent developments in many areas of modern day statistical mechanics and mathematical physics. He made seminal contributions in a wide array of topics, ranging from the fundamental theory of phase transitions, the Ising model, Heisenberg spin chains, lattice models, and the Yang-Baxter equation, to the emergence of Yangian in quantum groups. These topics and their ramifications will be discussed in this talk.
A framework for statistical-mechanical analysis of quantum Hamiltonians is introduced. The approach is based upon a gradient flow equation in the space of Hamiltonians such that the eigenvectors of the initial Hamiltonian evolve toward those of the r eference Hamiltonian. The nonlinear double-bracket equation governing the flow is such that the eigenvalues of the initial Hamiltonian remain unperturbed. The space of Hamiltonians is foliated by compact invariant subspaces, which permits the construction of statistical distributions over the Hamiltonians. In two dimensions, an explicit dynamical model is introduced, wherein the density function on the space of Hamiltonians approaches an equilibrium state characterised by the canonical ensemble. This is used to compute quenched and annealed averages of quantum observables.
The local equilibrium approach previously developed by the Authors [J. Mabillard and P. Gaspard, J. Stat. Mech. (2020) 103203] for matter with broken symmetries is applied to crystalline solids. The macroscopic hydrodynamics of crystals and their loc al thermodynamic and transport properties are deduced from the microscopic Hamiltonian dynamics. In particular, the Green-Kubo formulas are obtained for all the transport coefficients. The eight hydrodynamic modes and their dispersion relation are studied for general and cubic crystals. In the same twenty crystallographic classes as those compatible with piezoelectricity, cross effects coupling transport between linear momentum and heat or crystalline order are shown to split the degeneracy of damping rates for modes propagating in opposite generic directions.
Recently, new thermodynamic inequalities have been obtained, which set bounds on the quadratic fluctuations of intensive observables of statistical mechanical systems in terms of the Bogoliubov - Duhamel inner product and some thermal average values. It was shown that several well-known inequalities in equilibrium statistical mechanics emerge as special cases of these results. On the basis of the spectral representation, lower and upper bounds on the one-sided fidelity susceptibility were derived in analogous terms. Here, these results are reviewed and presented in a unified manner. In addition, the spectral representation of the symmetric two-sided fidelity susceptibility is derived, and it is shown to coincide with the one-sided case. Therefore, both definitions imply the same lower and upper bounds on the fidelity susceptibility.
In this work the theoretical basis for the famous formula of Macleod, relating the surface tension of a liquid in equilibrium with its own vapor to the one-particle densities in the two phases of the system, is derived. Using the statistical- mechani cal definition of the surface tension, it is proved that this property is, at the first approximation, given by the Macleod formula.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا