ﻻ يوجد ملخص باللغة العربية
This study reports on an implementation of cryptographic pairings in a general purpose computer algebra system. For security levels equivalent to the different AES flavours, we exhibit suitable curves in parametric families and show that optimal ate and twisted ate pairings exist and can be efficiently evaluated. We provide a correct description of Millers algorithm for signed binary expansions such as the NAF and extend a recent variant due to Boxall et al. to addition-subtraction chains. We analyse and compare several algorithms proposed in the literature for the final exponentiation. Finally, we ive recommendations on which curve and pairing to choose at each security level.
Lack of security expertise among software practitioners is a problem with many implications. First, there is a deficit of security professionals to meet current needs. Additionally, even practitioners who do not plan to work in security may benefit f
Cryptographic protocols are often specified by narrations, i.e., finite sequences of message exchanges that show the intended execution of the protocol. Another use of narrations is to describe attacks. We propose in this paper to compile, when possi
During the last few years, the explosion of Big Data has prompted cloud infrastructures to provide cloud-based database services as cost effective, efficient and scalable solutions to store and process large volume of data. Hence, NoSQL databases bec
We give an elementary and self-contained introduction to pairings on elliptic curves over finite fields. For the first time in the literature, the three different definitions of the Weil pairing are stated correctly and proved to be equivalent using
Recent studies in the realization of Majorana fermion (MF) quasiparticles have focused on engineering topological superconductivity by combining conventional superconductors and spin-textured electronic materials. We propose an effective model to cre