ترغب بنشر مسار تعليمي؟ اضغط هنا

Dust properties inside molecular clouds from coreshine modeling and observations

474   0   0.0 ( 0 )
 نشر من قبل Charlene Lefevre
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Context. Using observations to deduce dust properties, grain size distribution, and physical conditions in molecular clouds is a highly degenerate problem. Aims. The coreshine phenomenon, a scattering process at 3.6 and 4.5 $mu$m that dominates absorption, has revealed its ability to explore the densest parts of clouds. We want to use this effect to constrain the dust parameters. The goal is to investigate to what extent grain growth (at constant dust mass) inside molecular clouds is able to explain the coreshine observations. We aim to find dust models that can explain a sample of Spitzer coreshine data. We also look at the consistency with near-infrared data we obtained for a few clouds. Methods. We selected four regions with a very high occurrence of coreshine cases: Taurus-Perseus, Cepheus, Chameleon and L183/L134. We built a grid of dust models and investigated the key parameters to reproduce the general trend of surface bright- nesses and intensity ratios of both coreshine and near-infrared observations with the help of a 3D Monte-Carlo radiative transfer code. The grid parameters allow to investigate the effect of coagulation upon spherical grains up to 5 $mu$m in size derived from the DustEm diffuse interstellar medium grains. Fluffiness (porosity or fractal degree), ices, and a handful of classical grain size distributions were also tested. We used the near- and mostly mid-infrared intensity ratios as strong discriminants between dust models. Results. The determination of the background field intensity at each wavelength is a key issue. In particular, an especially strong background field explains why we do not see coreshine in the Galactic plane at 3.6 and 4.5 $mu$m. For starless cores, where detected, the observed 4.5 $mu$m / 3.6 $mu$m coreshine intensity ratio is always lower than $sim$0.5 which is also what we find in the models for the Taurus-Perseus and L183 directions. Embedded sources can lead to higher fluxes (up to four times greater than the strongest starless core fluxes) and higher coreshine ratios (from 0.5 to 1.1 in our selected sample). Normal interstellar radiation field conditions are sufficient to find suitable grain models at all wavelengths for starless cores. The standard interstellar grains are not able to reproduce observations and, due to the multi-wavelength approach, only a few grain types meet the criteria set by the data. Porosity does not affect the flux ratios while the fractal dimension helps to explain coreshine ratios but does not seem able to reproduce near-infrared observations without a mix of other grain types. Conclusions. Combined near- and mid-infrared wavelengths confirm the potential to reveal the nature and size distribution of dust grains. Careful assessment of the environmental parameters (interstellar and background fields, embedded or nearby reddened sources) is required to validate this new diagnostic.



قيم البحث

اقرأ أيضاً

78 - D. Paradis , C. Meny , M. Juvela 2019
In this present analysis we investigate the dust properties associated with the different gas phases (including the ionized phase this time) of the LMC molecular clouds at 1$^{prime}$ angular resolution (four times greater than a previous analysis) a nd with a larger spectral coverage range thanks to Herschel data. We also ensure the robustness of our results in the framework of various dust models. We performed a decomposition of the dust emission in the infrared (3.6 $mic$ to 500 $mic$) associated with the atomic, molecular, and ionized gas phases in the molecular clouds of the LMC. The resulting spectral energy distributions were fitted with four distinct dust models. We then analyzed the model parameters such as the intensity of the radiation field and the relative dust abundances, as well as the slope of the emission spectra at long wavelengths. This work allows dust models to be compared with infrared data in various environments for the first time, which reveals important differences between the models at short wavelengths in terms of data fitting (mainly in the PAH bands). In addition, this analysis points out distinct results according to the gas phases, such as dust composition directly affecting the dust temperature and the dust emissivity in the submm, and different dust emission in the near-infrared (NIR). We observe direct evidence of dust property evolution from the diffuse to the dense medium in a large sample of molecular clouds in the LMC. In addition, the differences in the dust component abundances between the gas phases could indicate different origins of grain formation. We also point out the presence of a NIR-continuum in all gas phases, with an enhancement in the ionized gas. We favor the hypothesis of an additional dust component as the carrier of this continuum.
The sample of 566 molecular clouds identified in the CO(2--1) IRAM survey covering the disk of M~33 is explored in detail.The clouds were found using CPROPS and were subsequently catalogued in terms of their star-forming properties as non-star-formin g (A), with embedded star formation (B), or with exposed star formation C.We find that the size-linewidth relation among the M~33 clouds is quite weak but, when comparing with clouds in other nearby galaxies, the linewidth scales with average metallicity.The linewidth and particularly the line brightness decrease with galactocentric distance.The large number of clouds makes it possible to calculate well-sampled cloud mass spectra and mass spectra of subsamples.As noted earlier, but considerably better defined here, the mass spectrum steepens (i.e. higher fraction of small clouds) with galactocentric distance.A new finding is that the mass spectrum of A clouds is much steeper than that of the star-forming clouds.Further dividing the sample, this difference is strong at both large and small galactocentric distances and the A vs C difference is a stronger effect than the inner/outer disk difference in mass spectra.Velocity gradients are identified in the clouds using standard techniques.The gradients are weak and are dominated by prograde rotation; the effect is stronger for the high signal-to-noise clouds.A discussion of the uncertainties is presented.The angular momenta are low but compatible with at least some simulations.The cloud and galactic gradients are similar; the cloud rotation periods are much longer than cloud lifetimes and comparable to the galactic rotation period.The rotational kinetic energy is 1-2% of the gravitational potential energy and the cloud edge velocity is well below the escape velocity, such that cloud-scale rotation probably has little influence on the evolution of molecular clouds.
We present high resolution ($1024^3$) simulations of super-/hyper-sonic isothermal hydrodynamic turbulence inside an interstellar molecular cloud (resolving scales of typically 20 -- 100 AU), including a multi-disperse population of dust grains, i.e. , a range of grain sizes is considered. Due to inertia, large grains (typical radius $a gtrsim 1.0,mu$m) will decouple from the gas flow, while small grains ($alesssim 0.1,mu$m) will tend to better trace the motions of the gas. We note that simulations with purely solenoidal forcing show somewhat more pronounced decoupling and less clustering compared to simulations with purely compressive forcing. Overall, small and large grains tend to cluster, while intermediate-size grains show essentially a random isotropic distribution. As a consequence of increased clustering, the grain-grain interaction rate is locally elevated; but since small and large grains are often not spatially correlated, it is unclear what effect this clustering would have on the coagulation rate. Due to spatial separation of dust and gas, a diffuse upper limit to the grain sizes obtained by condensational growth is also expected, since large (decoupled) grains are not necessarily located where the growth species in the molecular gas is.
Planck allows unbiased mapping of Galactic sub-millimetre and millimetre emission from the most diffuse regions to the densest parts of molecular clouds. We present an early analysis of the Taurus molecular complex, on line-of-sight-averaged data and without component separation. The emission spectrum measured by Planck and IRAS can be fitted pixel by pixel using a single modified blackbody. Some systematic residuals are detected at 353 GHz and 143 GHz, with amplitudes around -7 % and +13 %, respectively, indicating that the measured spectra are likely more complex than a simple modified blackbody. Significant positive residuals are also detected in the molecular regions and in the 217 GHz and 100 GHz bands, mainly caused by to the contribution of the J=2-1 and J=1-0 12CO and 13CO emission lines. We derive maps of the dust temperature T, the dust spectral emissivity index beta, and the dust optical depth at 250 microns tau. The temperature map illustrates the cooling of the dust particles in thermal equilibrium with the incident radiation field, from 16-17 K in the diffuse regions to 13-14 K in the dense parts. The distribution of spectral indices is centred at 1.78, with a standard deviation of 0.08 and a systematic error of 0.07. We detect a significant T-beta anti-correlation. The dust optical depth map reveals the spatial distribution of the column density of the molecular complex from the densest molecular regions to the faint diffuse regions. We use near-infrared extinction and HI data at 21-cm to perform a quantitative analysis of the spatial variations of the measured dust optical depth at 250 microns per hydrogen atom tau/NH. We report an increase of tau/NH by a factor of about 2 between the atomic phase and the molecular phase, which has a strong impact on the equilibrium temperature of the dust particles.
61 - V.V. Zhuravlev 2020
Dust is the usual minor component of the interstellar medium. Its dynamic role in the contraction of the diffuse gas into molecular clouds is commonly assumed to be negligible because of the small mass fraction, $f simeq 0.01$. However, as shown in t his study, the collective motion of dust grains with respect to the gas may considerably contribute to the destabilisation of the medium on scales $lambda lesssim lambda_J$, where $lambda_J$ is the Jeans length-scale. The linear perturbations of the uniform self-gravitating gas at rest are marginally stable at $lambda simeq lambda_J$, but as soon as the drift of grains is taken into account, they begin growing at a rate approximately equal to $(f tau)^{1/3} t^{-1}_{ff}$, where $tau$ is the stopping time of grains expressed in units of the free fall time of the cloud, $t_{ff}$. The physical mechanism responsible for such a weak dependence of the growth rate on $f$ is the resonance of heavy sound waves stopped by the self-gravity of gas with weak gravitational attraction caused by perturbations of the dust fraction. Once there is stationary subsonic bulk drift of the dust, the growing gas-dust perturbations at $lambda < lambda_J$ become waves propagating with the drift velocity projected onto the wavevector. Their growth has a resonant nature as well and the growth rate is substantially larger than that of the recently discovered resonant instability of gas-dust mixture in the absence of self-gravity. The new instabilities can facilitate gravitational contraction of cold interstellar gas into clouds and additionally produce dusty domains of sub-Jeans size at different stages of molecular cloud formation and evolution.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا