ﻻ يوجد ملخص باللغة العربية
We present a new Chandra X-ray observation of the off-axis galaxy group merger RXJ0751.3+5012. The hot atmospheres of the two colliding groups appear highly distorted by the merger. The images reveal arc-like cold fronts around each group core, produced by the motion through the ambient medium, and the first detection of a group merger shock front. We detect a clear density and temperature jump associated with a bow shock of Mach number M=1.9+/-0.4 ahead of the northern group. Using galaxy redshifts and the shock velocity of 1100+/-300 km/s, we estimate that the merger axis is only 10deg from the plane of the sky. From the projected group separation of 90 kpc, this corresponds to a time since closest approach of 0.1 Gyr. The northern group hosts a dense, cool core with a ram pressure stripped tail of gas extending 100 kpc. The sheared sides of this tail appear distorted and broadened by Kelvin-Helmholtz instabilities. We use the presence of this substructure to place an upper limit on the magnetic field strength and, for Spitzer-like viscosity, show that the development of these structures is consistent with the critical perturbation length above which instabilities can grow in the intragroup medium. The northern group core also hosts a galaxy pair, UGC4052, with a surrounding IR and near-UV ring 40 kpc in diameter. The ring may have been produced by tidal stripping of a smaller galaxy by UGC4052 or it may be a collisional ring generated by a close encounter between the two large galaxies.
(Context) In recent years, our understanding of the cool cores of galaxy clusters has changed. Once thought to be relatively simple places where gas cools and flows toward the centre, now they are believed to be very dynamic places where heating from
Cold fronts have been detected both in merging and in cool core clusters, where little or no sign of a merging event is present. A systematic search of sharp surface brightness discontinuities performed on a sample of 62 galaxy clusters observed with
We investigate whether the swirling cold front in the core of the Perseus Cluster of galaxies has affected the outer buoyant bubbles that originated from jets from the Active Galactic Nucleus in the central galaxy NGC1275. The inner bubbles and the O
We present a new Chandra observation of the galaxy cluster Abell 2146 which has revealed a complex merging system with a gas structure that is remarkably similar to the Bullet cluster (eg. Markevitch et al. 2002). The X-ray image and temperature map
Cold fronts have been observed in a large number of galaxy clusters. Understanding their nature and origin is of primary importance for the investigation of the internal dynamics of clusters. To gain insight on the nature of these features, we carry