ﻻ يوجد ملخص باللغة العربية
To understand and optimize optical spin initialization in room temperature CdSe nanocrystal quantum dots (NCQDs) we studied the dependence of the time-resolved Faraday rotation signal on pump energy $E_p$ in a series of NCQD samples with different sizes. In larger NCQDs, we observe two peaks in the spin signal vs. $E_p$, whereas in smaller NQCDs, only a single peak is observed before the signal falls to a low, broad plateau at higher energies. We calculate the spin-dependent oscillator strengths of optical transitions using a simple effective mass model to understand these results. The observed $E_p$ dependence of the spin pumping efficiency (SPE) arises from the competition between the heavy hole (hh), light hole (lh) and split-off (so) band contributions to transitions to the conduction band. The two latter contributions lead to an electron spin polarization in the opposite direction from the former. At lower $E_p$ the transitions are dominated by the hh band, giving rise to the low energy peaks. At higher $E_p$, the increasing contributions from the lh and so bands lead to a reduction in SPE. The different number of peaks in larger and smaller NCQDs is attributed to size-dependence of the ordering of the valence band states.
We perform photoluminescence excitation measurements on individual CdSe/ZnS nanocrystal quantum dots (NCQDs) at room temperature to study optical transition energies and broadening. The observed features in the spectra are identified and compared to
We report electrical control of the spin polarization of InAs/GaAs self-assembled quantum dots (QDs) at room temperature. This is achieved by electrical injection of spin-polarized electrons from an Fe Schottky contact. The circular polarization of t
The dephasing time of the lowest bright exciton in CdSe/ZnS wurtzite quantum dots is measured from 5 K to 170 K and compared with density dynamics within the exciton fine structure using a sensitive three-beam four-wave-mixing technique unaffected by
We report on polarization-resolved resonant photoluminescence (PL) spectroscopy of bright (spin-1) and dark (spin-2) excitons in colloidal CdSe nanocrystal quantum dots. Using high magnetic fields to 33 T, we resonantly excite (and selectively analyz
The electron spin coherence in n-doped and undoped, self-assembled CdSe/Zn(S,Se) quantum dots has been studied by time-resolved pump-probe Kerr rotation. Long-lived spin coherence persisting up to 13 ns after spin orientation has been found in the n-