ﻻ يوجد ملخص باللغة العربية
We propose and experimentally demonstrate a novel interferometric approach to generate arbitrary cylindrical vector beams on the higher order Poincare sphere. Our scheme is implemented by collinear superposition of two orthogonal circular polarizations with opposite topological charges. By modifying the amplitude and phase factors of the two beams, respectively, any desired vector beams on the higher order Poincare sphere with high tunability can be acquired. Our research provides a convenient way to evolve the polarization states in any path on the high order Poincare sphere.
We propose that the full Poincar{e} beam with any polarization geometries can be pictorially described by the hybrid-order Poincar{e} sphere whose eigenstates are defined as a fundamental-mode Gaussian beam and a Laguerre-Gauss beam. A robust and eff
We report a novel experimental scheme for single-pass second harmonic generation (SHG) of vector vortex beam in the blue. Using an ultrafast Ti:Sapphire laser of pulse width ~17 fs and a set of spiral phase plates in polarization based Mach-Zehnder i
In recent time, the optical-analogous skyrmions, topological quasiparticles with sophisticated vectorial structures, have received an increasing amount of interest. Here we propose theortically and experimentally a generalized family of these, the tu
Cylindrical vector beams (CVBs), which possesses polarization distribution of rotational symmetry on the transverse plane, can be developed in many optical technologies. Conventional methods to generate CVBs contain redundant interferometers or need
Cylindrical vector beam (CVB) is a structured lightwave characterized by its topologically nontrivial nature of the optical polarization. The unique electromagnetic field configuration of CVBs has been exploited to optical tweezers, laser acceleratio