ﻻ يوجد ملخص باللغة العربية
The quantum walk has emerged recently as a paradigmatic process for the dynamic simulation of complex quantum systems, entanglement production and quantum computation. Hitherto, photonic implementations of quantum walks have mainly been based on multi-path interferometric schemes in real space. Here, we report the experimental realization of a discrete quantum walk taking place in the orbital angular momentum space of light, both for a single photon and for two simultaneous photons. In contrast to previous implementations, the whole process develops in a single light beam, with no need of interferometers; it requires optical resources scaling linearly with the number of steps; and it allows flexible control of input and output superposition states. Exploiting the latter property, we explored the system band structure in momentum space and the associated spin-orbit topological features by simulating the quantum dynamics of Gaussian wavepackets. Our demonstration introduces a novel versatile photonic platform for quantum simulations.
Quantum communication has been successfully implemented in optical fibres and through free-space [1-3]. Fibre systems, though capable of fast key rates and low quantum bit error rates (QBERs), are impractical in communicating with destinations withou
Violating a nonlocality inequality enables the most powerful remote quantum information tasks and fundamental tests of physics. Loophole-free photonic verification of nonlocality has been achieved with polarization-entangled photon pairs, but not wit
Quantum key distribution (QKD) offers the possibility for two individuals to communicate a securely encrypted message. From the time of its inception in 1984 by Bennett and Brassard, QKD has been the result of intense research. One technical challeng
Quantum walks (QW) are of crucial importance in the development of quantum information processing algorithms. Recently, several quantum algorithms have been proposed to implement network analysis, in particular to rank the centrality of nodes in netw
We present a quantum random number generator (QRNG) based on the random outcomes inherent in projective measurements on a superposition of quantum states of light. Firstly, we use multiplexed holograms encoded on a spatial light modulator to spatiall