ﻻ يوجد ملخص باللغة العربية
We consider the problem of estimating an arbitrary dynamical parameter of an quantum open system in the input-output formalism. For irreducible Markov processes, we show that in the limit of large times the system-output state can be approximated by a quantum Gaussian state whose mean is proportional to the unknown parameter. This approximation holds locally in a neighbourhood of size $t^{-1/2}$ in the parameter space, and provides an explicit expression of the asymptotic quantum Fisher information in terms of the Markov generator. Furthermore we show that additive statistics of the counting and homodyne measurements also satisfy local asymptotic normality and we compute the corresponding classical Fisher informations. The mathematical theorems are illustrated with the examples of a two-level system and the atom maser. Our results contribute towards a better understanding of the statistical and probabilistic properties of the output process, with relevance for quantum control engineering, and the theory of non-equilibrium quantum open systems.
Verifying quantum systems has attracted a lot of interests in the last decades. In this paper, we initialised the model checking of quantum continuous-time Markov chain (QCTMC). As a real-time system, we specify the temporal properties on QCTMC by si
The objective of this work is to study continuous-time Markov decision processes on a general Borel state space with both impulsive and continuous controls for the infinite-time horizon discounted cost. The continuous-time controlled process is shown
This paper extends to Continuous-Time Jump Markov Decision Processes (CTJMDP) the classic result for Markov Decision Processes stating that, for a given initial state distribution, for every policy there is a (randomized) Markov policy, which can be
This paper describes the structure of solutions to Kolmogorovs equations for nonhomogeneous jump Markov processes and applications of these results to control of jump stochastic systems. These equations were studied by Feller (1940), who clarified in
In this paper, we generalize the property of local asymptotic normality (LAN) to an enlarged neighborhood, under the name of rescaled local asymptotic normality (RLAN). We obtain sufficient conditions for a regular parametric model to satisfy RLAN. W