ﻻ يوجد ملخص باللغة العربية
We study the role of the environment on galaxy evolution using a sample of 868 galaxies in the Virgo cluster and in its surrounding regions selected from the GUViCS Survey with the purpose of understanding the origin of the red sequence in dense environments. We collected multifrequency data covering the whole electromagnetic spectrum for most of the galaxies. We identify the different dynamical substructures composing the Virgo cluster and we calculate the local density of galaxies using different methods. We then study the distribution of galaxies belonging to the red sequence, the green valley, and the blue cloud within the different cluster substructures. Our analysis indicates that all the most massive galaxies are slow rotators and are the dominant galaxies of the different cluster substructures generally associated with a diffuse X-ray emission. They are probably the result of major merging events that occurred at early epochs. Slow rotators of lower stellar mass are also preferentially located within the different high-density substructures of the cluster. They are virialised within the cluster, thus Virgo members since its formation. They have been shaped by gravitational perturbations occurring within the infalling groups that later formed the cluster. On the contrary, low-mass star-forming systems are extremely rare in the inner regions of the Virgo cluster A, where the density of the intergalactic medium is at its maximum. Our ram pressure stripping models consistently indicate that these star-forming systems can be rapidly deprived of their interstellar medium during their interaction with the intergalactic medium. The lack of gas quenches their star formation activity transforming them into quiescent dwarf ellipticals. This mild transformation does not perturb the kinematic properties of these galaxies which still have rotation curves typical of star-forming systems.
We present the first detection of diffuse dust in the intra-cluster medium of the Virgo cluster out to $sim$0.4 virial radii, and study the radial variation of its properties on a radial scale of the virial radius. Analysing near-UV - $i$ colours for
CONTEXT: The Virgo direction has been observed at many wavelengths in the recent years, in particular in the ultraviolet with GALEX. The far ultraviolet (FUV) diffuse light detected by GALEX bears interesting information on the large scale distributi
We use the GALEX data of the GUViCS survey to construct the NUV luminosity function of the Virgo cluster over ~ 300 deg.2, an area covering the cluster and its surrounding regions up to ~ 1.8 virial radii. The NUV luminosity function is also determin
The GALEX Ultraviolet Virgo Cluster Survey (GUViCS) is a complete blind survey of the Virgo cluster covering about 40 sq. deg. in the far UV (FUV, lambda_eff=1539A, Delta-lambda=442A) and about 120 sq. deg. in the near UV (NUV, lambda_eff=2316A, Delt
We use photometric redshifts derived from new $u$-band through 4.5$mu$m Spitzer IRAC photometry in the 4.8,deg$^2$ of the XMM-LSS field to construct surface density maps in the redshift range 0.1-1.5. Our density maps show evidence for large-scale st