ترغب بنشر مسار تعليمي؟ اضغط هنا

Shapley Supercluster Survey (ShaSS): Galaxy Evolution from Filaments to Cluster Cores

131   0   0.0 ( 0 )
 نشر من قبل Paola Merluzzi Dr.
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present an overview of a multi-wavelength survey of the Shapley supercluster (SSC; z~0.05) covering a contiguous area of 260 h^-2_70 Mpc^2 including the supercluster core. The project main aim is to quantify the influence of cluster-scale mass assembly on galaxy evolution in one of the most massive structures in the local Universe. The Shapley supercluster survey (ShaSS) includes nine Abell clusters (A3552, A3554, A3556, A3558, A3559, A3560, A3562, AS0724, AS0726) and two poor clusters (SC1327- 312, SC1329-313) showing evidence of cluster-cluster interactions. Optical (ugri) and near-infrared (K) imaging acquired with VST and VISTA allow us to study the galaxy population down to m*+6 at the supercluster redshift. A dedicated spectroscopic survey with AAOmega on the Anglo-Australian Telescope provides a magnitude-limited sample of supercluster members with 80% completeness at ~m*+3. We derive the galaxy density across the whole area, demonstrating that all structures within this area are embedded in a single network of clusters, groups and filaments. The stellar mass density in the core of the SSC is always higher than 9E09 M_sun Mpc^-3, which is ~40x the cosmic stellar mass density for galaxies in the local Universe. We find a new filamentary structure (~7 Mpc long in projection) connecting the SSC core to the cluster A3559, as well as previously unidentified density peaks. We perform a weak-lensing analysis of the central 1 sqdeg field of the survey obtaining for the central cluster A3558 a mass of M_500=7.63E14 M_sun, in agreement with X-ray based estimates.



قيم البحث

اقرأ أيضاً

We present two new examples of galaxies undergoing transformation in the Shapley supercluster core. These low-mass (stellar mass from 0.4E10 to 1E10 Msun) galaxies are members of the two clusters SC-1329-313 (z=0.045) and SC-1327-312 (z=0.049). Integ ral-field spectroscopy complemented by imaging in ugriK bands and in Halpha narrow-band are used to disentangle the effects of tidal interaction (TI) and ram-pressure stripping (RPS). In both galaxies, SOS-61086 and SOS-90630, we observe one-sided extraplanar ionized gas extending respectively 30kpc and 41kpc in projection from their disks. The galaxies gaseous disks are truncated and the kinematics of the stellar and gas components are decoupled, supporting the RPS scenario. The emission of the ionized gas extends in the direction of a possible companion for both galaxies suggesting a TI. The overall gas velocity field of SOS-61086 is reproduced by ad hoc N-body/hydrodynamical simulations of RPS acting almost face-on and starting about 250Myr ago, consistent with the age of the young stellar populations. A link between the observed gas stripping and the cluster-cluster interaction experienced by SC-1329-313 and A3562 is suggested. Simulations of ram pressure acting almost edge-on are able to fully reproduce the gas velocity field of SOS-90630, but cannot at the same time reproduce the extended tail of outflowing gas. This suggests that an additional disturbance from a TI is required. This study adds a piece of evidence that RPS may take place in different environments with different impacts and witnesses the possible effect of cluster-cluster merger on RPS.
How important is the magnetic (B-) field when compared to gravity and turbulence in the star-formation process? Does its importance depend on scale and location? We summarize submm dust polarization observations towards the large filamentary infrared dark cloud G34 and towards a dense core in the high-mass star-forming region W51. We detect B-field orientations that are either perpendicular or parallel to the G34 filament axis. These B-field orientations further correlate with local velocity gradients. Towards three cores in G34 we find a varying importance between B-field, gravity, and turbulence that seems to dictate varying types of fragmentation. At highest resolution towards the gravity-dominated collapsing core W51 e2 we resolve new B-field features, such as converging B-field lines and possibly magnetic channels.
The Shapley Supercluster Survey is a multi-wavelength survey covering an area of ~23 deg^2 (~260 Mpc^2 at z=0.048) around the supercluster core, including nine Abell and two poor clusters, having redshifts in the range 0.045-0.050. The survey aims to investigate the role of the cluster-scale mass assembly on the evolution of galaxies, mapping the effects of the environment from the cores of the clusters to their outskirts and along the filaments. The optical (ugri) imaging acquired with OmegaCAM on the VLT Survey Telescope is essential to achieve the project goals providing accurate multi-band photometry for the galaxy population down to m*+6. We describe the methodology adopted to construct the optical catalogues and to separate extended and point-like sources. The catalogues reach average 5sigma limiting magnitudes within a 3arcsec diameter aperture of ugri=[24.4,24.6,24.1,23.3] and are 93% complete down to ugri=[23.8,23.8,23.5,22.0] mag, corresponding to ~m*_r+8.5. The data are highly uniform in terms of observing conditions and all acquired with seeing less than 1.1 arcsec full width at half-maximum. The median seeing in r-band is 0.6 arcsec, corresponding to 0.56 kpc h^{-1}_{70} at z=0.048. While the observations in the u, g and r bands are still ongoing, the i-band observations have been completed, and we present the i-band catalogue over the whole survey area. The latter is released and it will be regularly updated, through the use of the Virtual Observatory tools. This includes 734,319 sources down to i=22.0 mag and it is the first optical homogeneous catalogue at such a depth, covering the central region of the Shapley supercluster.
We present a database and velocity catalogue towards the region of the Shapley Supercluster based on 18,146 measured velocities for 10,719 galaxies in the approximately 300 square degree area between 12h 43mn 00s < R.A. < 14h 17mn 00s and -23{deg} 30 00 < Dec < -38{deg} 30 00. The data catalogue contains velocities from the literature found until 2015. It also includes 5,084 velocities, corresponding to 4,617 galaxies, observed by us at Las Campanas and CTIO observatories and not reported individually until now. Of these, 2,585 correspond to galaxies with no other previously published velocity measurement before 2015. Every galaxy in the velocity database has been identified with a galaxy extracted from the SuperCOSMOS photometric catalogues. We also provide a combined average velocity catalogue for all 10,719 galaxies with measured velocities, adopting the SuperCOSMOS positions as a homogeneous base. A general magnitude cut-off at R2=18.0 mag was adopted (with exceptions only for some of the new reported velocities). In general terms, we confirm the overall structure of the Shapley Supercluster, as found on earlier papers. However, the more extensive velocity data show finer structure, to be discussed in a future publication.
Many processes within galaxy clusters, such as those believed to govern the onset of thermally unstable cooling and AGN feedback, are dependent upon local dynamical timescales. However, accurately mapping the mass distribution within individual clust ers is challenging, particularly towards cluster centres where the total mass budget has substantial radially-dependent contributions from the stellar, gas, and dark matter components. In this paper we use a small sample of galaxy clusters with deep Chandra observations and good ancillary tracers of their gravitating mass at both large and small radii to develop a method for determining mass profiles that span a wide radial range and extend down into the central galaxy. We also consider potential observational pitfalls in understanding cooling in hot cluster atmospheres, and find tentative evidence for a relationship between the radial extent of cooling X-ray gas and nebular H-alpha emission in cool core clusters. Amongst this small sample we find no support for the existence of a central entropy floor, with the entropy profiles following a power-law profile down to our resolution limit.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا