ترغب بنشر مسار تعليمي؟ اضغط هنا

Variable Accretion Processes in the Young Binary-Star System UY Aur

308   0   0.0 ( 0 )
 نشر من قبل Jordan Stone
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present new K-band spectroscopy of the UY Aur binary star system. Our data are the first to show H$_{2}$ emission in the spectrum of UY Aur A and the first to spectrally resolve the Br{gamma} line in the spectrum of UY Aur B. We see an increase in the strength of the Br{gamma} line in UY Aur A and a decrease in Br{gamma} and H$_{2}$ line luminosity for UY Aur B compared to previous studies. Converting Br{gamma} line luminosity to accretion rate, we infer that the accretion rate onto UY Aur A has increased by $2 times 10^{-9}$ M$_{odot}$ yr$^{-1}$ per year since a rate of zero was observed in 1994. The Br{gamma} line strength for UY Aur B has decreased by a factor of 0.54 since 1994, but the K-band flux has increased by 0.9 mags since 1998. The veiling of UY Aur B has also increased significantly. These data evince a much more luminous disk around UY Aur B. If the lower Br{gamma} luminosity observed in the spectrum of UY Aur B indicates an intrinsically smaller accretion rate onto the star, then UY Aur A now accretes at a higher rate than UY Aur B. However, extinction at small radii or mass pile-up in the circumstellar disk could explain decreased Br{gamma} emission around UY Aur B even when the disk luminosity implies an increased accretion rate. In addition to our scientific results for the UY Aur system, we discuss a dedicated pipeline we have developed for the reduction of echelle-mode data from the ARIES spectrograph.



قيم البحث

اقرأ أيضاً

309 - Andrew Skemer 2010
The 10 micron silicate feature is an essential diagnostic of dust-grain growth and planet formation in young circumstellar disks. The Spitzer Space Telescope has revolutionized the study of this feature, but due to its small (85cm) aperture, it canno t spatially resolve small/medium separation binaries (<3; <420 AU) at the distances of the nearest star-forming regions (~140 pc). Large, 6-10m ground-based telescopes with mid-infrared instruments can resolve these systems. In this paper, we spatially resolve the 0.88 binary, UY Aur, with MMTAO/BLINC-MIRAC4 mid-infrared spectroscopy. We then compare our spectra to Spitzer/IRS (unresolved) spectroscopy, and resolved images from IRTF/MIRAC2, Keck/OSCIR and Gemini/Michelle, which were taken over the past decade. We find that UY Aur A has extremely pristine, ISM-like grains and that UY Aur B has an unusually shaped silicate feature, which is probably the result of blended emission and absorption from foreground extinction in its disk. We also find evidence for variability in both UY Aur A and UY Aur B by comparing synthetic photometry from our spectra with resolved imaging from previous epochs. The photometric variability of UY Aur A could be an indication that the silicate emission itself is variable, as was recently found in EX Lupi. Otherwise, the thermal continuum is variable, and either the ISM-like dust has never evolved, or it is being replenished, perhaps by UY Aurs circumbinary disk.
Recent exo-planetary surveys reveal that planets can orbit and survive around binary stars. This suggests that some fraction of young binary systems which possess massive circumbinary disks (CB) may be in the midst of planet formation. However, there are very few CB disks detected. We revisit one of the known CB disks, the UY Aurigae system, and probe 13CO 2-1, C18O 2-1, SO 5(6)-4(5) and 12CO 3-2 line emission and the thermal dust continuum. Our new results confirm the existence of the CB disk. In addition, the circumstellar (CS) disks are clearly resolved in dust continuum at 1.4 mm. The spectral indices between the wavelengths of 0.85 mm and 6 cm are found to be surprisingly low, being 1.6 for both CS disks. The deprojected separation of the binary is 1.26 based on our 1.4 mm continuum data. This is 0.07 (10 AU) larger than in earlier studies. Combining the fact of the variation of UY Aur B in $R$ band, we propose that the CS disk of an undetected companion UY Aur Bb obscures UY Aur Ba. A very complex kinematical pattern inside the CB disk is observed due to a mixing of Keplerian rotation of the CB disk, the infall and outflow gas. The streaming gas accreting from the CB ring toward the CS disks and possible outflows are also identified and resolved. The SO emission is found to be at the bases of the streaming shocks. Our results suggest that the UY Aur system is undergoing an active accretion phase from the CB disk to the CS disks. The UY Aur B might also be a binary system, making the UY Aur a triple system.
We present high resolution 1.06 -- 1.28 micron spectra toward the interacting binary UY Aur obtained with GEMINI/NIFS and the AO system Altair. We have detected [FeII] $lambda$~1.257 micron and [He I] $lambda$~1.083 micron lines from both UY Aur A (t he primary source) and UY Aur B (the secondary). In [Fe II] UY Aur A drives fast and widely opening outflows with an opening angle of ~ 90 degree along a position angle of ~40 degree, while UY Aur B is associated with a redshifted knot. The blueshifted and redshifted emissions show complicated structure between the primary and secondary. The radial velocities of the [Fe II] emission features are similar for UY Aur A and B: ~ -100 km/s for the blueshifted emission and ~ +130 km/s for the red-shifted component. The [He I] line profile observed toward UY Aur A comprises a central emission feature with deep absorptions at both blueshifted and redshifted velocities. These absorption features may be explained by stellar wind models. The [He I] line profile of UY Aur B shows only an emission feature.
Results of UBVRIJHKLM photometry, VRI polarimetry and optical spectroscopy of a young star RW Aur A obtained during 2010-11 and 2014-16 dimming events are presented. During the second dimming the star decreased its brightness to Delta V > 4.5 mag, po larization of its light in I-band was up to 30%, and color-magnitude diagram was similar to that of UX Ori type stars. We conclude that the reason of both dimmings is an eclipses of the star by dust screen, but the size of the screen is much larger than in the case of UXORs.
V582 Aur is a pre-main sequence FU Orionis type eruptive star, which entered a brightness minimum in 2016 March due to changes in the line-of-sight extinction. Here, we present and analyze new optical $B$, $V$, $R_C$ and $I_C$ band multiepoch observa tions and new near-infrared $J$, $H$ and $K_S$ band photometric measurements from 2018 January$-$2019 February, as well as publicly available mid-infrared WISE data. We found that the source shows a significant optical$-$near-infrared variability, and the current brightness minimum has not completely finished yet. If the present dimming originates from the same orbiting dust clump that caused a similar brightness variation in 2012, than our results suggest a viscous spreading of the dust particles along the orbit. Another scenario is that the current minimum is caused by a dust structure, that is entering and leaving the inner part of the system. The WISE measurements could be consistent with this scenario. Our long-term data, as well as an accretion disk modeling hint at a general fading of V582 Aur, suggesting that the source will reach the quiescent level in $sim$80 years.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا