ترغب بنشر مسار تعليمي؟ اضغط هنا

Examination of the role of the $^{14}$O($alpha$,$p$)$^{17}$F reaction rate in type I x-ray bursts

274   0   0.0 ( 0 )
 نشر من قبل Jianjun He Dr
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The $^{14}$O($alpha$,$p$)$^{17}$F reaction is one of the key reactions involved in the breakout from the hot-CNO cycle to the rp-process in type I x-ray bursts (XRBs). The resonant properties in the compound nucleus $^{18}$Ne have been investigated through resonant elastic scattering of $^{17}$F+$p$. The radioactive $^{17}$F beam was separated by the CNS Radioactive Ion Beam separator (CRIB) and bombarded a thick H$_2$ gas target at 3.6 MeV/nucleon. The recoiling light particles were measured by three ${Delta}$E-E silicon telescopes at laboratory angles of $theta$$_{lab}$$approx$3$^circ$, 10$^circ$ and 18$^circ$, respectively. Five resonances at $E_{x}$=6.15, 6.28, 6.35, 6.85, and 7.05 MeV were observed in the excitation functions, and their spin-parities have been determined based on an $R$-matrix analysis. In particular, $J^{pi}$=1$^-$ was firmly assigned to the 6.15-MeV state which dominates the thermonuclear $^{14}$O($alpha$,$p$)$^{17}$F rate below 2 GK. As well, a possible new excited state in $^{18}$Ne was observed at $E_{x}$=6.85$pm$0.11 MeV with tentative $J$=0 assignment. This state could be the analog state of the 6.880 MeV (0$^{-}$) level in the mirror nucleus $^{18}$O, or a bandhead state (0$^+$) of the six-particle four-hole (6$p$-4$h$) band. A new thermonuclear $^{14}$O($alpha$,$p$)$^{17}$F rate has been determined, and the astrophysical impact of multiple recent rates has been examined using an XRB model. Contrary to previous expectations, we find only modest impact on predicted nuclear energy generation rates from using reaction rates differing by up to several orders of magnitude.



قيم البحث

اقرأ أيضاً

114 - J. Hu , J.J. He , S.W. Xu 2010
Properties of proton resonances in $^{18}$Ne have been investigated efficiently by utilizing a technique of proton resonant elastic scattering with a $^{17}$F radioactive ion (RI) beam and a thick proton target. A 4.22~MeV/nucleon $^{17}$F RI beam wa s produced via a projectile-fragmentation reaction, and subsequently separated by a Radioactive Ion Beam Line in Lanzhou ({tt RIBLL}). Energy spectra of the recoiled protons were measured by two sets of $Delta$E-E silicon telescope at center-of-mass scattering angles of $theta_{c.m.}$$approx$175${^circ}$$pm$5${^circ}$, $theta_{c.m.}$$approx$152${^circ}$$pm$8${^circ}$, respectively. Several proton resonances in $^{18}$Ne were observed, and their resonant parameters have been determined by an $R$-matrix analysis of the differential cross sections in combination with the previous results. The resonant parameters are related to the reaction-rate calculation of the stellar $^{14}$O($alpha$,$p$)$^{17}$F reaction, which was thought to be the breakout reaction from the hot CNO cycles into the $rp$-process in x-ray bursters. Here, $J^pi$=(3$^-$, 2$^-$) are tentatively assigned to the 6.15-MeV state which was thought the key 1$^-$ state previously. In addition, a doublet structure at 7.05 MeV are tentatively identified, and its contribution to the resonant reaction rate of $^{14}$O($alpha$,$p$)$^{17}$F could be enhanced by at least factors of about 4$sim$6 in comparison with the previous estimation involving only a singlet. The present calculated resonant rates are much larger than those previous values, and it may imply that this breakout reaction could play a crucial role under x-ray bursters conditions.
Context. Material processed by the CNO cycle in stellar interiors is enriched in 17O. When mixing processes from the stellar surface reach these layers, as occurs when stars become red giants and undergo the first dredge up, the abundance of 17O incr eases. Such an occurrence explains the drop of the 16O/17O observed in RGB stars with mass larger than 1.5 M_solar. As a consequence, the interstellar medium is continuously polluted by the wind of evolved stars enriched in 17O . Aims. Recently, the Laboratory for Underground Nuclear Astrophysics (LUNA) collaboration released an improved rate of the 17O(p,alpha)14N reaction. In this paper we discuss the impact that the revised rate has on the 16O/17O ratio at the stellar surface and on 17O stellar yields. Methods. We computed stellar models of initial mass between 1 and 20 M_solar and compared the results obtained by adopting the revised rate of the 17O(p,alpha)14N to those obtained using previous rates. Results. The post-first dredge up 16O/17O ratios are about 20% larger than previously obtained. Negligible variations are found in the case of the second and the third dredge up. In spite of the larger 17O(p,alpha)14N rate, we confirm previous claims that an extra-mixing process on the red giant branch, commonly invoked to explain the low carbon isotopic ratio observed in bright low-mass giant stars, marginally affects the 16O/17O ratio. Possible effects on AGB extra-mixing episodes are also discussed. As a whole, a substantial reduction of 17O stellar yields is found. In particular, the net yield of stars with mass ranging between 2 and 20 M_solar is 15 to 40% smaller than previously estimated. Conclusions. The revision of the 17O(p,alpha)14N rate has a major impact on the interpretation of the 16O/17O observed in evolved giants, in stardust grains and on the 17O stellar yields.
103 - D. Kahl , J. Jose , P.J. Woods 2021
Context. Direct observation of gamma-ray emission from the decay of $^{18}$F ejected in classical nova outbursts remains a major focus of the nuclear astrophysics community. However, modeling the abundance of ejected $^{18}$F, and thus the predicted detectability distance of a gamma-ray signal near 511 keV emitted from these transient thermonuclear episodes, is hampered by significant uncertainties in our knowledge of the key $^{18}$F(p,$alpha$) reaction rate. Aims. We analyze uncertainties in the most recent nuclear physics experimental results employed to calculate the $^{18}$F(p,$alpha$) reaction rate. Our goal is to determine which uncertainties have the most profound influence on the predicted abundance of $^{18}$F ejected from novae, in order to guide future experimental works. Methods. We calculated a wide range of $^{18}$F(p,$alpha$) reaction rates using R-Matrix formalism, allowing us to take into account all interference effects. Using a selection of 16 evenly-spaced rates over the full range, we performed 16 new hydrodynamic nova simulations. Results. We performed one of the most thorough theoretical studies of the impact of the $^{18}$F(p,$alpha$) reaction in classical novae to date. The $^{18}$F(p,$alpha$) rate remains highly uncertain at nova temperatures, resulting in a factor ~10 uncertainty in the predicted abundance of $^{18}$F ejected from nova explosions. We also found that the abundance of $^{18}$F may be strongly correlated with that of $^{19}$F. Conclusions. Despite numerous nuclear physics uncertainties affecting the $^{18}$F(p,$alpha$) reaction rate, which are dominated by unknown interference signs between 1/2$^+$ and 3/2$^+$ resonances, future experimental work should focus on firmly and precisely determining the directly measurable quantum properties of the subthreshold states in the compound nucleus $^{19}$Ne near 6.13 and 6.29 MeV.
324 - J. Hu , J.J. He , A. Parikh 2014
The $^{14}$O($alpha$,$p$)$^{17}$F reaction is one of the key reactions involved in the breakout from the hot-CNO cycle to the rp-process in type I x-ray bursts. The resonant properties in the compound nucleus $^{18}$Ne have been investigated through resonant elastic scattering of $^{17}$F+$p$. The radioactive $^{17}$F beam was separated by the CNS Radioactive Ion Beam separator (CRIB) and bombarded a thick H$_2$ gas target at 3.6 MeV/nucleon. The recoiling light particles were measured by using three ${Delta}$E-E silicon telescopes at laboratory angles of $theta$$_{lab}$$approx$3$^circ$, 10$^circ$ and 18$^circ$, respectively. Five resonances at $E_{x}$=6.15, 6.28, 6.35, 6.85, and 7.05 MeV were observed in the excitation functions. Based on an $R$-matrix analysis, $J^{pi}$=1$^-$ was firmly assigned to the 6.15-MeV state. This state dominates the thermonuclear $^{14}$O($alpha$,$p$)$^{17}$F rate below 1 GK. We have also confirmed the existence and spin-parities of three states between 6.1 and 6.4 MeV. As well, a possible new excited state in $^{18}$Ne was observed at $E_{x}$=6.85$pm$0.11 MeV and tentatively assigned as $J$=0. This state could be the analog state of the 6.880 MeV (0$^{-}$) level in the mirror nucleus $^{18}$O, or a bandhead state (0$^+$) of the six-particle four-hole (6$p$-4$h$) band. A new thermonuclear rate of the $^{14}$O($alpha$,$p$)$^{17}$F reaction has been determined, and its astrophysical impact has been examined within the framework of one-zone x-ray burst postprocessing calculations.
144 - J.J. He , A. Parikh , B.A. Brown 2014
The thermonuclear rate of the $^{42}$Ti($p$,$gamma$)$^{43}$V reaction has been reevaluated based on a recent precise proton separation energy measurement of $S_p$($^{43}$V)=83$pm$43 keV. The astrophysical impact of our new rates has been investigated through one-zone postprocessing type I x-ray burst calculations. It shows that the new experimental value of $S_p$ significantly affects the yields of species between A$approx$40--45. As well, the precision of the recent experimental $S_p$ value constrains these yields to better than a factor of three.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا