ﻻ يوجد ملخص باللغة العربية
The effects induced by the quantum vacuum fluctuations of one massless real scalar field on a configuration of two partially transparent plates are investigated. The physical properties of the infinitely thin plates are simulated by means of Dirac-$delta-delta^prime$ point interactions. It is shown that the distortion caused on the fluctuations by this external background gives rise to a generalization of Robin boundary conditions. The $T$-operator for potentials concentrated on points with non defined parity is computed with total generality. The quantum vacuum interaction energy between the two plates is computed using the $TGTG$ formula to find positive, negative, and zero Casimir energies. The parity properties of the $delta-delta^prime$ potential allow repulsive quantum vacuum force between identical plates.
We explore boundary scattering in the sine-Gordon model with a non-integrable family of Robin boundary conditions. The soliton content of the field after collision is analysed using a numerical implementation of the direct scattering problem associat
We study the Casimir effect for scalar fields with general curvature coupling subject to mixed boundary conditions $(1+beta_{m}n^{mu}partial_{mu})phi =0$ at $x=a_{m}$ on one ($m=1$) and two ($m=1,2$) parallel plates at a distance $aequiv a_{2}-a_{1}$
Electromagnetic field interactions in a dielectric medium represent a longstanding field of investigation, both at the classical level and at the quantum one. We propose a 1+1 dimensional toy-model which consists of an half-line filling dielectric me
The basic characteristics of the covariant chiral current $<J_{mu}>$ and the covariant chiral energy-momentum tensor $<T_{mu u}>$ are obtained from a chiral effective action. These results are used to justify the covariant boundary condition used in
The worldline formalism has been widely used to compute physical quantities in quantum field theory. However, applications of this formalism to quantum fields in the presence of boundaries have been studied only recently. In this article we show how