ترغب بنشر مسار تعليمي؟ اضغط هنا

Single Particle Strengths and Mirror States in $^{15}$N$-^{15}$O below 12.0 MeV

273   0   0.0 ( 0 )
 نشر من قبل Christopher Mertin
 تاريخ النشر 2014
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

New $^{14}$N(d,p) angular distribution data were taken at a deuteron bombarding energy of 16 MeV to locate all narrow single particle neutron states up to 15 MeV in excitation. A new shell model calculation is able to reproduce all levels in $^{15}$N up to 11.5 MeV and is used to characterize a narrow single particle level at 11.236 MeV and to provide a map of the single particle strengths. The known levels in $^{15}$N are then used to determine their mirrors in the lesser known nucleus $^{15}$O. The 2s$_{1/2}$ and 1d$_{5/2}$ single particle centroid energies are determined for the $^{15}$N$-^{15}$O mirror pair as: $^{15}$N $(text{2s}_{1/2}) = 8.08$ MeV, $^{15}$O $(text{2s}_{1/2}) = 7.43$ MeV, $^{15}$N $(text{1d}_{5/2}) = 7.97$ MeV, and $^{15}$O $(text{1d}_{5/2}) = 7.47$ MeV. These results confirm the degeneracy of these orbits and that the $^{15}$N$-^{15}$O nuclei are where the transition between the $text{2s}_{1/2}$ lying below the $text{1d}_{5/2}$ to lying above it, takes place. The $text{1d}_{3/2}$ single particle strength is estimated to be centered around 13 MeV in these nuclei.



قيم البحث

اقرأ أيضاً

The CNO cycle is the main energy source in stars more massive than our sun, it defines the energy production and the cycle time that lead to the lifetime of massive stars, and it is an important tool for the determination of the age of globular clust ers. One of the largest uncertainties in the CNO chain of reactions comes from the uncertainty in the $^{14}$N$(p,gamma)^{15}$O reaction rate. This uncertainty arises predominantly from the uncertainty in the lifetime of the sub-threshold state in $^{15}$O at $E_{x}$ = 6792 keV. Previous measurements of this states lifetime are significantly discrepant. Here, we report on a new lifetime measurement of this state, as well as the excited states in $^{15}$O at $E_{x}$ = 5181 keV and $E_{x}$ = 6172 keV, via the $^{14}$N$(p,gamma)^{15}$O reaction at proton energies of $E_{p} = 1020$ keV and $E_{p} = 1570$ keV. The lifetimes have been determined with the Doppler-Shift Attenuation Method (DSAM) with three separate, nitrogen-implanted targets with Mo, Ta, and W backing. We obtained lifetimes from the weighted average of the three measurements, allowing us to account for systematic differences between the backing materials. For the 6792 keV state, we obtained a $tau = 0.6 pm 0.4$ fs. To provide cross-validation of our method, we measured the known lifetimes of the states at 5181 keV and 6172 keV to be $tau = 7.5 pm 3.0$ and $tau = 0.7 pm 0.5$ fs, respectively, which are in good agreement with previous measurements.
The separation between single particle levels in nuclei plays the dominant role in determining the location of the neutron drip line. The separation also provides a test of current crossed shell model interactions if the experimental data is such tha t multiple shells are involved. The present work uses the $^{14}$N(d, p)$^{15}$N reaction to extract the 2s$_{1/2}$, and 1d$_{5/2}$ total neutron single particle strengths and then compares these results with a shell model calculation using a p-sd crossed shell interaction to identify the J$^pi$ of all levels in $^{15}$N up to 12.8 MeV in excitation.
The $^{14}textrm{N(p,}gammatextrm{)}^{15}textrm{O}$ reaction is the slowest reaction of the carbon-nitrogen cycle of hydrogen burning and thus determines its rate. The precise knowledge of its rate is required to correctly model hydrogen burning in a symptotic giant branch stars. In addition, it is a necessary ingredient for a possible solution of the solar abundance problem by using the solar $^{13}$N and $^{15}$O neutrino fluxes as probes of the carbon and nitrogen abundances in the solar core. After the downward revision of its cross section due to a much lower contribution by one particular transition, capture to the ground state in $^{15}$O, the evaluated total uncertainty is still 8%, in part due to an unsatisfactory knowledge of the excitation function over a wide energy range. The present work reports precise S-factor data at twelve energies between 0.357-1.292~MeV for the strongest transition, capture to the 6.79~MeV excited state in $^{15}$O, and at ten energies between 0.479-1.202~MeV for the second strongest transition, capture to the ground state in $^{15}$O. An R-matrix fit is performed to estimate the impact of the new data on astrophysical energies. The recently suggested slight enhancement of the 6.79~MeV transition at low energy could not be confirmed. The present extrapolated zero-energy S-factors are $S_{6.79}(0)$~=~1.24$pm$0.11~keV~barn and $S_{rm GS}(0)$~=~0.19$pm$0.05~keV~barn.
The 15O(alpha,gamma)19Ne reaction plays a role in the ignition of Type I x-ray bursts on accreting neutron stars. The lifetimes of states in 19Ne above the 15O + alpha threshold of 3.53 MeV are important inputs to calculations of the astrophysical re action rate. These levels in 19Ne were populated in the 3He(20Ne,alpha)19Ne reaction at a 20Ne beam energy of 34 MeV. The lifetimes of six states above the threshold were measured with the Doppler shift attenuation method (DSAM). The present measurements agree with previous determinations of the lifetimes of these states and in some cases are considerably more precise.
Classical novae result from thermonuclear explosions producing several $gamma$-ray emitters which are prime targets for satellites observing in the MeV range. The early 511 keV gamma-ray emission depends critically on the $^{18}$F(p,$alpha$)$^{15}$O reaction rate which, despite many experimental and theoretical efforts, still remains uncertain. One of the main uncertainties in the $^{18}$F(p,$alpha$)$^{15}$O reaction rate is the contribution in the Gamow window of interference between sub-threshold $^{19}$Ne states and known broad states at higher energies. Therefore the goal of this work is to clarify the existence and the nature of these sub-threshold states. States in the $^{19}$Ne compound nucleus were studied at the Tandem-ALTO facility using the $^{19}$F($^3$He,t)$^{19}$Ne charge exchange reaction. Tritons were detected with an Enge Split-pole spectrometer while decaying protons or $alpha$-particles from unbound $^{19}$Ne states were collected, in coincidence, with a double-sided silicon strip detector array. Angular correlations were extracted and constraints on the spin and parity of decaying states established. The coincidence yield at $E_x$ = 6.29 MeV was observed to be high spin, supporting the conclusion that it is indeed a doublet consisting of high spin and low spin components. Evidence for a broad, low spin state was observed around 6 MeV. Branching ratios were extracted for several states above the proton threshold and were found to be consistent with the literature. R-matrix calculations show the relative contribution of sub-threshold states to the astrophysically important energy region above the proton threshold. The levels schemes of $^{19}$Ne and $^{19}$F are still not sufficiently well known and further studies of the analogue assignments are needed. The tentative broad state at 6 MeV may only play a role if the reduced proton width is large.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا