ترغب بنشر مسار تعليمي؟ اضغط هنا

The origin of thermal component in the transverse momentum spectra in high energy hadronic processes

174   0   0.0 ( 0 )
 نشر من قبل Alexander Bylinkin
 تاريخ النشر 2014
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The transverse momentum spectra of hadrons produced in high energy collisions can be decomposed into two components: the exponential (thermal) and the power (hard) ones. Recently, the H1 Collaboration has discovered that the relative strength of these two components in Deep Inelastic Scattering depends drastically upon the global structure of the event - namely, the exponential component is absent in the diffractive events characterized by a rapidity gap. We discuss the possible origin of this effect, and speculate that it is linked to confinement. Specifically, we argue that the thermal component is due to the effective event horizon introduced by the confining string, in analogy to the Hawking-Unruh effect. In diffractive events, the $t$-channel exchange is color-singlet and there is no fragmenting string -- so the thermal component is absent. The slope of the soft component of the hadron spectrum in this picture is determined by the saturation momentum that drives the deceleration in the color field, and thus the Hawking-Unruh temperature. We analyze the data on non-diffractive $pp$ collisions and find that the slope of the thermal component of the hadron spectrum is indeed proportional to the saturation momentum.



قيم البحث

اقرأ أيضاً

The energy and rapidity dependence of the average transverse momentum $langle p_T rangle$ in $pp$ and $pA$ collisions at RHIC and LHC energies are estimated using the Colour Glass Condensate (CGC) formalism. We update previous predictions for the $p_ T$ - spectra using the hybrid formalism of the CGC approach and two phenomenological models for the dipole - target scattering amplitude. We demonstrate that these models are able to describe the RHIC and LHC data for the hadron production in $pp$, $dAu$ and $pPb$ collisions at $p_T le 20$ GeV. Moreover, we present our predictions for $langle p_T rangle$ and demonstrate that the ratio $langle p_{T}(y)rangle / langle p_{T}(y = 0)rangle$ decreases with the rapidity and has a behaviour similar to that predicted by hydrodynamical calculations.
In this paper we perform the first simultaneous QCD global analysis of data from semi-inclusive deep inelastic scattering, Drell-Yan, $e^+e^-$ annihilation into hadron pairs, and proton-proton collisions. Consequently, we are able to extract a univer sal set of non-perturbative functions that describes the observed asymmetries in these reactions. The outcome of our analysis indicates single transverse-spin asymmetries in high-energy collisions have a common origin. Furthermore, we achieve the first phenomenological agreement with lattice QCD on the up and down quark tensor charges.
We investigate the gluon transverse momentum dependent correlators as Fourier transform of matrix elements of nonlocal operator combinations. At the operator level these correlators include both field strength operators and gauge links bridging the n onlocality. In contrast to the collinear PDFs, the gauge links are no longer unique for transverse momentum dependent PDFs (TMDs) and also Wilson loops lead to nontrivial effects. We look at gluon TMDs for unpolarized, vector and tensor polarized targets. In particular a single Wilson loop operators become important when one considers the small-x limit of gluon TMDs.
We present a study of transverse momentum ($p_{T}$) spectra of unidentified charged particles in pp collisions at RHIC and LHC energies from $sqrt{s}$ = 62.4 GeV to 13 TeV using Tsallis/Hagedorn function. The power law of Tsallis/Hagedorn form gives excellent description of the hadron spectra in $p_{T}$ range from 0.2 to 300 GeV/$c$. The power index $n$ of the $p_T$ distributions is found to follow a function of the type $a+b/sqrt {s}$ with asymptotic value $a = 5.72$. The parameter $T$ governing the soft bulk contribution to the spectra remains almost same over wide range of collision energies. We also provide a Tsallis/Hagedorn fit to the $p_{T}$ spectra of hadrons in pPb and different centralities of PbPb collisions at $sqrt{s_{NN}}$ = 5.02 TeV. The data/fit shows deviations from the Tsallis distribution which become more pronounced as the system size increases. We suggest simple modifications in the Tsallis/Hagedorn power law function and show that the above deviations can be attributed to the transverse flow in low $p_T$ region and to the in-medium energy loss in high $p_T$ region.
Within the framework of transverse-momentum-dependent factorization, we investigate for the first time the impact of a flavor-dependent intrinsic transverse momentum of quarks on the production of $W^{pm}$ bosons in proton-proton collisions at $sqrt{ s}$ = 7 TeV. We estimate the shift in the extracted value of the $W$ boson mass $M_W$ induced by different choices of flavor-dependent parameters for the intrinsic quark transverse momentum by means of a template fit to the transverse-mass and the lepton transverse-momentum distributions of the $W$-decay products. We obtain $-6leq Delta M_{W^+} leq 9$ MeV and $-4leq Delta M_{W^-} leq 3$ MeV with a statistical uncertainty of $pm 2.5$ MeV. Our findings call for more detailed investigations of flavor-dependent nonperturbative effects linked to the proton structure at hadron colliders.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا