ترغب بنشر مسار تعليمي؟ اضغط هنا

Radon in the DRIFT-II directional dark matter TPC: emanation, detection and mitigation

386   0   0.0 ( 0 )
 نشر من قبل Stephen Sadler
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English
 تأليف J. B. R. Battat




اسأل ChatGPT حول البحث

Radon gas emanating from materials is of interest in environmental science and also a major concern in rare event non-accelerator particle physics experiments such as dark matter and double beta decay searches, where it is a major source of background. Notable for dark matter experiments is the production of radon progeny recoils (RPRs), the low energy (~100 keV) recoils of radon daughter isotopes, which can mimic the signal expected from WIMP interactions. Presented here are results of measurements of radon emanation from detector materials in the 1 metre cubed DRIFT-II directional dark matter gas time projection chamber experiment. Construction and operation of a radon emanation facility for this work is described, along with an analysis to continuously monitor DRIFT data for the presence of internal 222Rn and 218Po. Applying this analysis to historical DRIFT data, we show how systematic substitution of detector materials for alternatives, selected by this device for low radon emanation, has resulted in a factor of ~10 reduction in internal radon rates. Levels are found to be consistent with the sum from separate radon emanation measurements of the internal materials and also with direct measurement using an attached alpha spectrometer. The current DRIFT detector, DRIFT-IId, is found to have sensitivity to 222Rn of 2.5 {mu}Bq/l with current analysis efficiency, potentially opening up DRIFT technology as a new tool for sensitive radon assay of materials.



قيم البحث

اقرأ أيضاً

245 - D. Santos , J. Billard , G. Bosson 2013
The dark matter directional detection opens a new field in cosmology bringing the possibility to build a map of nuclear recoils that would be able to explore the galactic dark matter halo giving access to a particle characterization of such matter an d the shape of the halo. The MIMAC (MIcro-tpc MAtrix of Chambers) collaboration has developed in the last years an original prototype detector based on the direct coupling of large pixelized micromegas with a devoted fast self-triggered electronics showing the feasibility of a new generation of directional detectors. The discovery potential of this search strategy is discussed and illustrated. In June 2012, the first bi-chamber prototype has been installed at Modane Underground Laboratory (LSM) and the first underground background events, the gain stability and calibration are shown.
211 - D. Santos , G. Bosson , J.L. Bouly 2013
Directional detection of non-baryonic Dark Matter is a promising search strategy for discriminating WIMP events from neutrons, the ultimate background for dark matter direct detection. This strategy requires both a precise measurement of the energy d own to a few keV and 3D reconstruction of tracks down to a few mm. The MIMAC (MIcro-tpc MAtrix of Chambers) collaboration has developed in the last years an original prototype detector based on the direct coupling of large pixelized micromegas with a special developed fast self-triggered electronics showing the feasibility of a new generation of directional detectors. The first bi-chamber prototype has been installed at Modane, underground laboratory in June 2012. The first undergournd background events, the gain stability and calibration are shown. The first spectrum of nuclear recoils showing 3D tracks coming from the radon progeny is presented.
We propose to achieve the proof-of-principle of the PTOLEMY project to directly detect the Cosmic Neutrino Background (CNB). Each of the technological challenges described in [1,2] will be targeted and hopefully solved by the use of the latest experi mental developments and profiting from the low background environment provided by the LNGS underground site. The first phase will focus on the graphene technology for a tritium target and the demonstration of TES microcalorimetry with an energy resolution of better than 0.05 eV for low energy electrons. These technologies will be evaluated using the PTOLEMY prototype, proposed for underground installation, using precision HV controls to step down the kinematic energy of endpoint electrons to match the calorimeter dynamic range and rate capabilities. The second phase will produce a novel implementation of the EM filter that is scalable to the full target size and which demonstrates intrinsic triggering capability for selecting endpoint electrons. Concurrent with the CNB program, we plan to exploit and develop the unique properties of graphene to implement an intermediate program for direct directional detection of MeV dark matter [3,4]. This program will evaluate the radio-purity and scalability of the graphene fabrication process with the goal of using recently identified ultra-high radio-purity CO2 sources. The direct detection of the CNB is a snapshot of early universe dynamics recorded by the thermal relic neutrino yield taken at a time that predates the epochs of Big Bang Nucleosynthesis, the Cosmic Microwave Background and the recession of galaxies (Hubble Expansion). Big Bang neutrinos are believed to have a central role in the evolution of the Universe and a direct measurement with PTOLEMY will unequivocally establish the extent to which these predictions match present-day neutrino densities.
285 - E. Daw , A. Dorofeev , J.R. Fox 2011
The current status of the DRIFT (Directional Recoil Identification From Tracks) experiment at Boulby Mine is presented, including the latest limits on the WIMP spin-dependent cross-section from 1.5 kg days of running with a mixture of CS2 and CF4. Pl anned upgrades to DRIFT IId are detailed, along with ongoing work towards DRIFT III, which aims to be the worlds first 10 m3-scale directional Dark Matter detector.
A potential background for the SuperCDMS SNOLAB dark matter experiment is from radon daughters that have plated out onto detector surfaces. To reach desired backgrounds, understanding plate-out rates during detector fabrication as well as mitigating radon in surrounding air is critical. A radon mitigated cleanroom planned at SNOLAB builds upon a system commissioned at the South Dakota School of Mines & Technology (SD Mines). The ultra-low radon cleanroom at SD Mines has air supplied by a vacuum-swing-adsorption radon mitigation system that has achieved $>$1000$times$ reduction for a cleanroom activity consistent with zero and $<0.067,$Bq$,$m$^{-3}$ at 90% confidence. Our simulation of this system, validated against calibration data, provides opportunity for increased understanding and optimization for this and future systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا