ترغب بنشر مسار تعليمي؟ اضغط هنا

Galaxy Formation as a Cosmological Tool. I: The Galaxy Merger History as a Measure of Cosmological Parameters

148   0   0.0 ( 0 )
 نشر من قبل Christopher J. Conselice
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

As galaxy formation and evolution over long cosmic time-scales depends to a large degree on the structure of the universe, the assembly history of galaxies is potentially a powerful approach for learning about the universe itself. In this paper we examine the merger history of dark matter halos based on the Extended Press-Schechter formalism as a function of cosmological parameters, redshift and halo mass. We calculate how major halo mergers are influenced by changes in the cosmological values of $Omega_{rm m}$, $Omega_{Lambda}$, $sigma_{8}$, the dark matter particle temperature (warm vs. cold dark matter), and the value of a constant and evolving equation of state parameter $w(z)$. We find that the merger fraction at a given halo mass varies by up to a factor of three for halos forming under the assumption of Cold Dark Matter, within different underling cosmological parameters. We find that the current measurements of the merger history, as measured through observed galaxy pairs as well as through structure, are in agreement with the concordance cosmology with the current best fit giving $1 - Omega_{rm m} = Omega_{rm Lambda} = 0.84^{+0.16}_{-0.17}$. To obtain a more accurate constraint competitive with recently measured cosmological parameters from Planck and WMAP requires a measured merger accuracy of $delta f_{rm m} sim 0.01$, implying surveys with an accurately measured merger history over 2 - 20 deg$^{2}$, which will be feasible with the next generation of imaging and spectroscopic surveys such as Euclid and LSST.



قيم البحث

اقرأ أيضاً

237 - Mark Vogelsberger 2019
Over the last decades, cosmological simulations of galaxy formation have been instrumental for advancing our understanding of structure and galaxy formation in the Universe. These simulations follow the non-linear evolution of galaxies modeling a var iety of physical processes over an enormous range of scales. A better understanding of the physics relevant for shaping galaxies, improved numerical methods, and increased computing power have led to simulations that can reproduce a large number of observed galaxy properties. Modern simulations model dark matter, dark energy, and ordinary matter in an expanding space-time starting from well-defined initial conditions. The modeling of ordinary matter is most challenging due to the large array of physical processes affecting this matter component. Cosmological simulations have also proven useful to study alternative cosmological models and their impact on the galaxy population. This review presents a concise overview of the methodology of cosmological simulations of galaxy formation and their different applications.
We introduce methods which allow observed galaxy clustering to be used together with observed luminosity or stellar mass functions to constrain the physics of galaxy formation. We show how the projected two-point correlation function of galaxies in a large semi-analytic simulation can be estimated to better than ~10% using only a very small subsample of the subhalo merger trees. This allows measured correlations to be used as constraints in a Monte Carlo Markov Chain exploration of the astrophysical and cosmological parameter space. An important part of our scheme is an analytic profile which captures the simulated satellite distribution extremely well out to several halo virial radii. This is essential to reproduce the correlation properties of the full simulation at intermediate separations. As a first application, we use low-redshift clustering and abundance measurements to constrain a recent version of the Munich semi-analytic model. The preferred values of most parameters are consistent with those found previously, with significantly improved constraints and somewhat shifted best values for parameters that primarily affect spatial distributions. Our methods allow multi-epoch data on galaxy clustering and abundance to be used as joint constraints on galaxy formation. This may lead to significant constraints on cosmological parameters even after marginalising over galaxy formation physics.
Observational studies have revealed that galaxy pairs tend to have lower gas-phase metallicity than isolated galaxies. This metallicity deficiency can be caused by inflows of low-metallicity gas due to the tidal forces and gravitational torques assoc iated with galaxy mergers, diluting the metal content of the central region. In this work we demonstrate that such metallicity dilution occurs in state-of-the-art cosmological simulations of galaxy formation. We find that the dilution is typically 0.1 dex for major mergers, and is noticeable at projected separations smaller than $40$ kpc. For minor mergers the metallicity dilution is still present, even though the amplitude is significantly smaller. Consistent with previous analysis of observed galaxies we find that mergers are outliers from the emph{fundamental metallicity relation}, with deviations being larger than expected for a Gaussian distribution of residuals. Our large sample of mergers within full cosmological simulations also makes it possible to estimate how the star formation rate enhancement and gas consumption timescale behave as a function of the merger mass ratio. We confirm that strong starbursts are likely to occur in major mergers, but they can also arise in minor mergers if more than two galaxies are participating in the interaction, a scenario that has largely been ignored in previous work based on idealised isolated merger simulations.
Present-day clusters are massive halos containing mostly quiescent galaxies, while distant protoclusters are extended structures containing numerous star-forming galaxies. We investigate the implications of this fundamental change in a cosmological c ontext using a set of N-body simulations and semi-analytic models. We find that the fraction of the cosmic volume occupied by all (proto)clusters increases by nearly three orders of magnitude from z=0 to z=7. We show that (proto)cluster galaxies are an important, and even dominant population at high redshift, as their expected contribution to the cosmic star-formation rate density rises (from 1% at z=0) to 20% at z=2 and 50% at z=10. Protoclusters thus provide a significant fraction of the cosmic ionizing photons, and may have been crucial in driving the timing and topology of cosmic reionization. Internally, the average history of cluster formation can be described by three distinct phases: at z~10-5, galaxy growth in protoclusters proceeded in an inside-out manner, with centrally dominant halos that are among the most active regions in the Universe; at z~5-1.5, rapid star formation occurred within the entire 10-20 Mpc structures, forming most of their present-day stellar mass; at z<~1.5, violent gravitational collapse drove these stellar contents into single cluster halos, largely erasing the details of cluster galaxy formation due to relaxation and virialization. Our results motivate observations of distant protoclusters in order to understand the rapid, extended stellar growth during Cosmic Noon, and their connection to reionization during Cosmic Dawn.
69 - Brant Robertson 2005
(Abridged) The violent hierarchical nature of the LCDM cosmology poses serious difficulties for the formation of disk galaxies. To help resolve these issues, we describe a new, merger-driven scenario for the cosmological formation of disk galaxies at high redshifts that supplements the standard model based on dissipational collapse.In this picture, large gaseous disks may be produced from high-angular momentum mergers of systems that are gas-dominated, i.e. M_gas/(M_gas +M_star > 0.5 at the height of the merger. Pressurization from the multiphase structure of the interstellar medium prevents the complete conversion of gas into stars during the merger, and if enough gas remains to form a disk, the remnant eventually resembles a disk galaxy. We perform numerical simulations of galaxy mergers to study how supernovae feedback strength, supermassive black hole growth and feedback, progenitor gas fraction, merger mass-ratio, and orbital geometry impact the formation of remnant disks. We find that disks can build angular momentum through mergers and the degree of rotational support of the baryons in the merger remnant is primarily related to feedback processes associated with star formation. Disk-dominated remnants are restricted to form in mergers that are gas-dominated at the time of final coalescence and gas-dominated mergers typically require extreme progenitor gas fractions (>80%). We also show that the formation of rotationally-supported stellar systems in mergers is not restricted to idealized orbits, or major or minor mergers. We suggest that the hierarchical nature of the LCDM cosmology and the physics of the interstellar gas may act together to form spiral galaxies by building the angular momentum of disks through early, gas-dominated mergers.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا