ترغب بنشر مسار تعليمي؟ اضغط هنا

The Gaia payload uplink commanding system

156   0   0.0 ( 0 )
 نشر من قبل Alcione Mora
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

This document describes the uplink commanding system for the ESA Gaia mission. The need for commanding, the main actors, data flow and systems involved are described. The system architecture is explained in detail, including the different levels of configuration control, software systems and data models. A particular subsystem, the automatic interpreter of human-readable onboard activity templates, is also carefully described. Many lessons have been learned during the commissioning and are also reported, because they could be useful for future space survey missions.



قيم البحث

اقرأ أيضاً

PICARD is a scientific space mission dedicated to the study of the solar variability origin. A French micro-satellite will carry an imaging telescope for measuring the solar diameter, limb shape and solar oscillations, and two radiometers for measuri ng the total solar irradiance and the irradiance in five spectral domains, from ultraviolet to infrared. The mission is planed to be launched in 2009 for a 3-year duration. This article presents the PICARD Payload Data Centre, which role is to collect, process and distribute the PICARD data. The Payload Data Centre is a joint project between laboratories, space agency and industries. The Belgian scientific policy office funds the industrial development and future operations under the European Space Agency program. The development is achieved by the SPACEBEL Company. The Belgian operation centre is in charge of operating the PICARD Payload Data Centre. The French space agency leads the development in partnership with the French scientific research centre, which is responsible for providing all the scientific algorithms. The architecture of the PICARD Payload Data Centre (software and hardware) is presented. The software system is based on a Service Oriented Architecture. The host structure is made up of the basic functions such as data management, task scheduling and system supervision including a graphical interface used by the operator to interact with the system. The other functions are mission-specific: data exchange (acquisition, distribution), data processing (scientific and non-scientific processing) and managing the payload (programming, monitoring). The PICARD Payload Data Centre is planned to be operated for 5 years. All the data will be stored into a specific data centre after this period.
The Payload Data Handling System (PDHS) of Gaia is a technological challenge, since it will have to process a huge amount of data with limited resources. Its main tasks include the optimal codification of science data, its packetisation and its compr ession, before being stored on-board ready to be transmitted. Here we describe a set of proposals for its design, as well as some simulators developed to optimise and test these proposals.
The Gaia satellite will survey the entire celestial sphere down to 20th magnitude, obtaining astrometry, photometry, and low resolution spectrophotometry on one billion astronomical sources, plus radial velocities for over one hundred million stars. Its main objective is to take a census of the stellar content of our Galaxy, with the goal of revealing its formation and evolution. Gaias unique feature is the measurement of parallaxes and proper motions with hitherto unparalleled accuracy for many objects. As a survey, the physical properties of most of these objects are unknown. Here we describe the data analysis system put together by the Gaia consortium to classify these objects and to infer their astrophysical properties using the satellites data. This system covers single stars, (unresolved) binary stars, quasars, and galaxies, all covering a wide parameter space. Multiple methods are used for many types of stars, producing multiple results for the end user according to different models and assumptions. Prior to its application to real Gaia data the accuracy of these methods cannot be assessed definitively. But as an example of the current performance, we can attain internal accuracies (RMS residuals) on F,G,K,M dwarfs and giants at G=15 (V=15-17) for a wide range of metallicites and interstellar extinctions of around 100K in effective temperature (Teff), 0.1mag in extinction (A0), 0.2dex in metallicity ([Fe/H]), and 0.25dex in surface gravity (logg). The accuracy is a strong function of the parameters themselves, varying by a factor of more than two up or down over this parameter range. After its launch in November 2013, Gaia will nominally observe for five years, during which the system we describe will continue to evolve in light of experience with the real data.
Space observatories for gravitational radiation such as LISA are equipped with dedicated on-board instrumentation capable of measuring magnetic fields with low-noise conditions at millihertz frequencies. The reason is that the core scientific payload can only operate successfully if the magnetic environment meets certain strict low-frequency requirements. With this purpose, a simplified version of the proposed magnetic measurement system for LISA has been developed for a six-unit CubeSat, which will make it possible to improve the technology readiness level (TRL) of the instrument. The special feature of the experiment is that the magnetic sensors integrated in the payload are magnetically shielded to low-frequency fluctuations by using a small cylindrical permalloy enclosure. This will allow the in-flight noise characterization of the system under the CubeSat orbit environment. Therefore, a CubeSat platform will offer the opportunity to measure the capability of the instrument and will guide the progress towards the improved magnetic measurement system for LISA. This article describes the principal characteristics and implementation of the CubeSat payload.
EChO is a three-modules (VNIR, SWIR, MWIR), highly integrated spectrometer, covering the wavelength range from 0.55 $mu$m, to 11.0 $mu$m. The baseline design includes the goal wavelength extension to 0.4 $mu$m while an optional LWIR module extends th e range to the goal wavelength of 16.0 $mu$m. An Instrument Control Unit (ICU) is foreseen as the main electronic subsystem interfacing the spacecraft and collecting data from all the payload spectrometers modules. ICU is in charge of two main tasks: the overall payload control (Instrument Control Function) and the housekeepings and scientific data digital processing (Data Processing Function), including the lossless compression prior to store the science data to the Solid State Mass Memory of the Spacecraft. These two main tasks are accomplished thanks to the Payload On Board Software (P-OBSW) running on the ICU CPUs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا