ﻻ يوجد ملخص باللغة العربية
We experimentally explore the state space of three qubits on an NMR quantum information processor. We construct a scheme to experimentally realize a canonical form for general three-qubit states up to single-qubit unitaries. This form involves a non-trivial combination of GHZ and W-type maximally entangled states of three qubits. The general circuit that we have constructed for the generic state reduces to those for GHZ and W states as special cases. The experimental construction of a generic state is carried out for a nontrivial set of parameters and the good fidelity of preparation is confirmed by complete state tomography. The GHZ and W-states are constructed as special cases of the general experimental scheme. Further, we experimentally demonstrate a curious fact about three-qubit states, where for almost all pure states, the two-qubit reduced states can be used to reconstruct the full three-qubit state. For the case of a generic state and for the W-state, we demonstrate this method of reconstruction by comparing it with the directly tomographed three-qubit state.
We present an experimental implementation of the coined discrete time quantum walk on a square using a three qubit liquid state nuclear magnetic resonance (NMR) quantum information processor (QIP). Contrary to its classical counterpart, we observe co
We report an experimental realization of adaptive Bayesian quantum state tomography for two-qubit states. Our implementation is based on the adaptive experimental design strategy proposed in [F.Huszar and N.M.T.Houlsby, Phys.Rev.A 85, 052120 (2012)]
The correlations of certain entangled quantum states can be fully reproduced via a local model. We discuss in detail the practical implementation of an algorithm for constructing local models for entangled states, recently introduced by Hirsch et al.
We study the local unitary equivalence for two and three-qubit mixed states by investigating the invariants under local unitary transformations. For two-qubit system, we prove that the determination of the local unitary equivalence of 2-qubits states
We experimentally test the recently predicted anisotropic invariance properties of pure three-qubit states, via generation and measurement of polarisation-path entangled three-qubit states. These properties do not require aligned reference frames and