ﻻ يوجد ملخص باللغة العربية
It is well known that for any prime $pequiv 3$ (mod $4$), the class numbers of the quadratic fields $mathbb{Q}(sqrt{p})$ and $mathbb{Q}(sqrt{-p})$, $h(p)$ and $h(-p)$ respectively, are odd. It is natural to ask whether there is a formula for $h(p)/h(-p)$ modulo powers of $2$. We show the formula $h(p) equiv h(-p) m(p)$ (mod $16$), where $m(p)$ is an integer defined using the negative continued fraction expansion of $sqrt{p}$. Our result solves a conjecture of Richard Guy.
The Mordell-Weil groups $E(mathbb{Q})$ of elliptic curves influence the structures of their quadratic twists $E_{-D}(mathbb{Q})$ and the ideal class groups $mathrm{CL}(-D)$ of imaginary quadratic fields. For appropriate $(u,v) in mathbb{Z}^2$, we def
Using predictions in mirror symmetry, Cu{a}ldu{a}raru, He, and Huang recently formulated a Moonshine Conjecture at Landau-Ginzburg points for Kleins modular $j$-function at $j=0$ and $j=1728.$ The conjecture asserts that the $j$-function, when specia
A typical decomposition question asks whether the edges of some graph $G$ can be partitioned into disjoint copies of another graph $H$. One of the oldest and best known conjectures in this area, posed by Ringel in 1963, concerns the decomposition of
Let $X_0^{star}(k,n,s)$ denote the sum of all multiple zeta-star values of weight $k$, depth $n$ and height $s$. Kaneko and Ohno conjecture that for any positive integers $m,n,s$ with $m,ngeqslant s$, the difference $(-1)^mX_0^{star}(m+n+1,n+1,s)-(-1
We prove that if the set of unordered pairs of real numbers is colored by finitely many colors, there is a set of reals homeomorphic to the rationals whose pairs have at most two colors. Our proof uses large cardinals and it verifies a conjecture of