ﻻ يوجد ملخص باللغة العربية
We use a finite temperature effective field theory recently developed for superfluid Fermi gases to investigate the properties of dark solitons in these superfluids. Our approach provides an analytic solution for the dip in the order parameter and the phase profile accross the soliton, which can be compared with results obtained in the framework of the Bogoliubov - de Gennes equations. We present results in the whole range of the BCS-BEC crossover, for arbitrary temperatures, and taking into account Gaussian fluctuations about the saddle point. The obtained analytic solutions yield an exact energy-momentum relation for a dark soliton showing that the soliton in a Fermi gas behaves like a classical particle even at nonzero temperatures. The spatial profile of the pair field and for the parameters of state for the soliton are analytically studied. In the strong-coupling regime and/or for sufficiently high temperatures, the obtained analytic solutions match well the numeric results obtained using the Bogoliubov - de Gennes equations.
In this work dark soliton collisions in a one-dimensional superfluid Fermi gas are studied across the BEC-BCS crossover by means of a recently developed finite-temperature effective field theory [S. N. Klimin, J. Tempere, G. Lombardi, J. T. Devreese,
Dark solitons in superfluid Bose gases decay through the snake instability mechanism, unless they are strongly confined. Recent experiments in superfluid Fermi gases have also interpreted soliton decay via this mechanism. However, we show using both
We use the time-dependent Bogoliubov de Gennes equations to study dark solitons in three-dimensional spin-imbalanced superfluid Fermi gases. We explore how the shape and dynamics of dark solitons are altered by the presence of excess unpaired spins w
The recent experimental realization of Bose-Fermi superfluid mixtures of dilute ultracold atomic gases has opened new perspectives in the study of quantum many-body systems. Depending on the values of the scattering lengths and the amount of bosons a
Studying the collective pairing phenomena in a two-component Fermi gas, we predict the appearance near the transition temperature $T_c$ of a well-resolved collective mode of quadratic dispersion. The mode is visible both above and below $T_c$ in the