ترغب بنشر مسار تعليمي؟ اضغط هنا

Glueball instability and thermalization driven by dark radiation

269   0   0.0 ( 0 )
 نشر من قبل Kazuo Ghoroku
 تاريخ النشر 2014
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We study glueballs in the holographic gauge theories living in a curved space-time. The dual bulk is obtained as a solution of the type IIB superstring theory with two parameters, which correspond to four dimensional (4D) cosmological constant $lambda$ and the dark radiation $C$ respectively. The theory is in the confining phase for $lambda <0$ and small $C$, then we observe stable glueball states in this theory. However, the stability of the glueball states is lost when the density of the dark radiation ($C$) increases and exceeds a critical point. Above this point, the dark radiation works as the heat bath of the Yang-Mills theory since the event horizon appears. Thus the system is thermalized, and the theory is in a finite temperature deconfinement phase, namely in the QGP phase. We observe this transition process through the glueball spectra which varies dramatically with $C$. We also examined the entanglement entropy of the system to find a clue of this phase transition and the role of the dark radiation $C$ in the entanglement entropy.



قيم البحث

اقرأ أيضاً

We calculate the mass of the lowest lying spin two glueball in N=1 super Yang-Mills from the dual Klebanov-Strassler background. We show that the Regge trajectory obtained is linear; the 0++, 1-- and 2++ states lie on a line of slope 0.23 -measured i n units of the conifold deformation. We also compare mass ratios with lattice data and find agreement within one standard deviation.
In a quantum field theory, apparent thermalization can be a consequence of entanglement as opposed to scatterings. We discuss here how this can help to explain open puzzles such as the success of thermal models in electron-positron collisions. It tur ns out that an expanding relativistic string described by the Schwinger model (which also underlies the Lund model) has at early times an entanglement entropy that is extensive in rapidity. At these early times, the reduced density operator is of thermal form, with an entanglement temperature $T_tau=hbar/(2pi k_Btau)$, even in the absence of any scatterings.
Using the AdS/CFT correspondence, we probe the scale-dependence of thermalization in strongly coupled field theories following a quench, via calculations of two-point functions, Wilson loops and entanglement entropy in d=2,3,4. In the saddlepoint app roximation these probes are computed in AdS space in terms of invariant geometric objects - geodesics, minimal surfaces and minimal volumes. Our calculations for two-dimensional field theories are analytical. In our strongly coupled setting, all probes in all dimensions share certain universal features in their thermalization: (1) a slight delay in the onset of thermalization, (2) an apparent non-analyticity at the endpoint of thermalization, (3) top-down thermalization where the UV thermalizes first. For homogeneous initial conditions the entanglement entropy thermalizes slowest, and sets a timescale for equilibration that saturates a causality bound over the range of scales studied. The growth rate of entanglement entropy density is nearly volume-independent for small volumes, but slows for larger volumes.
Quantum field theories of strongly interacting matter sometimes have a useful holographic description in terms of the variables of a gravitational theory in higher dimensions. This duality maps time dependent physics in the gauge theory to time depen dent solutions of the Einstein equations in the gravity theory. In order to better understand the process by which real world theories such as QCD behave out of thermodynamic equilibrium, we study time dependent perturbations to states in a model of a confining, strongly coupled gauge theory via holography. Operationally, this involves solving a set of non-linear Einstein equations supplemented with specific time dependent boundary conditions. The resulting solutions allow one to comment on the timescale by which the perturbed states thermalize, as well as to quantify the properties of the final state as a function of the perturbation parameters. We comment on the influence of the dual gauge theorys confinement scale on these results, as well as the appearance of a previously anticipated universal scaling regime in the abrupt quench limit.
310 - Elena Caceres 2012
We study the thermalization of a strongly coupled quantum field theory in the presence of a chemical potential. More precisely, using the holographic prescription, we calculate non- local operators such as two point function, Wilson loop and entangle ment entropy in a time- dependent background that interpolates between AdSd+1 and AdSd+1 -Reissner-Nordstrom for d = 3, 4. We find that it is the entanglement entropy that thermalizes the latest and thus sets a time-scale for equilibration in the field theory. We study the dependence of the thermalization time on the probe length and the chemical potential. We find an interesting non-monotonic behavior. For a fixed small value of T l and small values of mu/T the thermalization time decreases as we increase mu/T, thus the plasma thermalizes faster. For large values of mu/T the dependence changes and the thermalization time increases with increasing mu/T . On the other hand, if we increase the value of T l this non-monotonic behavior becomes less pronounced and eventually disappears indicating two different regimes for the physics of thermalization: non-monotonic dependence of the thermalization time on the chemical potential for T l << 1 and monotonic for T l >> 1.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا