ﻻ يوجد ملخص باللغة العربية
We present evidence for mass segregation in the outer-halo globular cluster Palomar 14, which is intuitively unexpected since its present-day two-body relaxation time significantly exceeds the Hubble time. Based on archival Hubble Space Telescope imaging, we analyze the radial dependence of the stellar mass function in the clusters inner 39.2 pc in the mass range of 0.53-0.80 M_sun, ranging from the main-sequence turn-off down to a V-band magnitude of 27.1 mag. The mass function at different radii is well approximated by a power law and rises from a shallow slope of 0.6+/-0.2 in the clusters core to a slope of 1.6+/-0.3 beyond 18.6 pc. This is seemingly in conflict with the finding by Beccari et al. (2011), who interpret the clusters non-segregated population of (more massive) blue straggler stars, compared to (less massive) red giants and horizontal branch stars, as evidence that the cluster has not experienced dynamical segregation yet. We discuss how both results can be reconciled. Our findings indicate that the cluster was either primordially mass-segregated and/or used to be significantly more compact in the past. For the latter case, we propose tidal shocks as the mechanism driving the clusters expansion, which would imply that Palomar 14 is on a highly eccentric orbit. Conversely, if the cluster formed already extended and with primordial mass segregation, this could support an accretion origin of the cluster.
We present an analysis of the radial dependence of the stellar mass function in the diffuse outer-halo globular cluster Palomar 14. Using archival HST/WFPC2 data of the clusters central 39 pc (corresponding to ~0.85*r_h) we find that the mass functio
We obtained precise line-of-sight radial velocities of 23 member stars of the remote halo globular cluster Palomar 4 (Pal 4) using the High Resolution Echelle Spectrograph (HIRES) at the Keck I telescope. We also measured the mass function of the clu
We report the detection of a pair of degree-long tidal tails associated with the globular cluster Palomar 14, using images obtained at the CFHT. We reveal a power-law departure from a King profile at large distances to the cluster center. The density
We present the stellar main sequence luminosity function (LF) of the disrupted, low-mass, low-concentration globular cluster Palomar 5 and its well-defined tidal tails, which emanate from the cluster as a result of its tidal interaction with the Milk
We use a sample of newly-discovered globular clusters from the Pan-Andromeda Archaeological Survey (PAndAS) in combination with previously-catalogued objects to map the spatial distribution of globular clusters in the M31 halo. At projected radii bey