ترغب بنشر مسار تعليمي؟ اضغط هنا

The Gentle Growth of Galaxies at High Redshifts in Overdense Environments

116   0   0.0 ( 0 )
 نشر من قبل Isaac Shlosman
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have explored prevailing modes of galaxy growth for redshifts z ~ 6-14, comparing substantially overdense and normal regions of the universe, using high-resolution zoom-in cosmological simulations. Such rare overdense regions have been projected to host high-z quasars. We demonstrate that galaxies in such environments grow predominantly by a smooth accretion from cosmological filaments which dominates the mass input from major, intermediate and minor mergers. We find that by z ~6, the accumulated galaxy mass fraction from mergers falls short by a factor of 10 of the cumulative accretion mass for galaxies in the overdense regions, and by a factor of 5 in the normal environments. Moreover, the rate of the stellar mass input from mergers also lies below that of an in-situ star formation (SF) rate. The fraction of stellar masses in galaxies contributed by mergers in overdense regions is ~12%, and ~33% in the normal regions, at these redshifts. Our median SF rates for ~few X 10^9 Mo galaxies agrees well with the recently estimated rates for z ~ 7 galaxies from Spitzers SURF-UP survey. Finally, we find that the main difference between the normal and overdense regions lies in the amplified growth of massive galaxies in massive dark matter halos. This leads to the formation of >= 10^{10} Mo galaxies due to the ~100-fold increase in mass during the above time period. Such galaxies are basically absent in the normal regions at these redshifts.



قيم البحث

اقرأ أيضاً

146 - Hidenobu Yajima 2014
We use high-resolution zoom-in cosmological simulations of galaxies of Romano-Diaz et al., post-processing them with a panchromatic three-dimensional radiation transfer code to obtain the galaxy UV luminosity function (LF) at z ~ 6-12. The galaxies a re followed in a rare, heavily overdense region within a ~ 5-sigma density peak, which can host high-z quasars, and in an average density region, down to the stellar mass of M_star ~ 4* 10^7 Msun. We find that the overdense regions evolve at a substantially accelerated pace --- the most massive galaxy has grown to M_star ~ 8.4*10^10 Msun by z = 6.3, contains dust of M_dust~ 4.1*10^8 Msun, and is associated with a very high star formation rate, SFR ~ 745 Msun/yr.The attained SFR-M_star correlation results in the specific SFR slowly increasing with M_star. Most of the UV radiation in massive galaxies is absorbed by the dust, its escape fraction f_esc is low, increasing slowly with time. Galaxies in the average region have less dust, and agree with the observed UV LF. The LF of the overdense region is substantially higher, and contains much brighter galaxies. The massive galaxies are bright in the infrared (IR) due to the dust thermal emission, with L_IR~ 3.7*10^12 Lsun at z = 6.3, while L_IR < 10^11 Lsun for the low-mass galaxies. Therefore, ALMA can probe massive galaxies in the overdense region up to z ~ 10 with a reasonable integration time. The UV spectral properties of disky galaxies depend significantly upon the viewing angle.The stellar and dust masses of the most massive galaxy in the overdense region are comparable to those of the sub-millimetre galaxy (SMG) found by Riechers et al. at z = 6.3, while the modelled SFR and the sub-millimetre flux fall slightly below the observed one. Statistical significance of these similarities and differences will only become clear with the upcoming ALMA observations.
83 - A.W. Zirm , S. Toft , M. Tanaka 2011
We present a high spatial-resolution HST/NICMOS imaging survey in the field of a known protocluster surrounding the powerful radio galaxy MRC1138-262 at z=2.16. Previously, we have shown that this field exhibits a substantial surface overdensity of r ed J-H galaxies. Here we focus on the stellar masses and galaxy effective radii in an effort to compare and contrast the properties of likely protocluster galaxies with their field counterparts and to look for correlations between galaxy structure and (projected) distance relative to the radio galaxy. We find a hint that quiescent, cluster galaxies are on average less dense than quiescent field galaxies of similar stellar mass and redshift. In fact, we find only two (of nine) quiescent protocluster galaxies are of simliar density to the majority of the massive, quiescent compact galaxies (SEEDs) found in several field surveys. Furthermore, there is some indication that the structural Sersic n parameter is higher (n ~ 3-4) on average for cluster galaxies compared to the field SEEDs (n ~ 1-2) This result may imply that the accelerated galaxy evolution expected (and observed) in overdense regions also extends to structural evolution presuming that massive galaxies began as dense (low n) SEEDs and have already evolved to be more in line with local galaxies of the same stellar mass.
We search for high-redshift (z>4.5) X-ray AGNs in the deep central (off-axis angle <5.7) region of the 7 Ms Chandra Deep Field-South X-ray image. We compile an initial candidate sample from direct X-ray detections. We then probe more deeply in the X- ray data by using pre-selected samples with high spatial resolution NIR/MIR (HST 1.6 micron and Spitzer 4.5 micron) and submillimeter (ALMA 850 micron) observations. The combination of the NIR/MIR and submillimeter pre-selections allows us to find X-ray sources with a wide range of dust properties and spectral energy distributions (SEDs). We use the SEDs from the optical to the submillimeter to determine if previous photometric redshifts were plausible. Only five possible z>5 X-ray AGNs are found, all of which might also lie at lower redshifts. If they do lie at high redshifts, then two are Compton-thick AGNs, and three are ALMA 850 micron sources. We find that (i) the number density of X-ray AGNs is dropping rapidly at high redshifts, (ii) the detected AGNs do not contribute significantly to the photoionization at z>5, and (iii) the measured X-ray light density over z=5-10 implies a very low black hole accretion density with very little growth in the black hole mass density in this redshift range.
We show that the use of red colour as the basis for selecting candidate high redshift dusty galaxies from surveys made with Herschel has proved highly successful. The highest redshift such object, HFLS3, lies at z=6.34 and numerous other sources have been found. Spectroscopic followup confirms that most of these lie at z>4. These sources are found in such numbers that they represent a challenge to current models of galaxy evolution. We also examine the prospects for finding dusty galaxies at still higher redshifts. These would not appear in the SPIRE surveys from Herschel but would be detected in longer wavelength, submm, surveys. Several such `SPIRE-dropouts have been found and are now subject to followup observations.
We use the semi-analytical model of galaxy formation GALFORM to characterise an indirect signature of AGN feedback in the environment of radio galaxies at high redshifts. The predicted environment of radio galaxies is denser than that of radio-quiet galaxies with the same stellar mass. This is consistent with observational results from the CARLA survey. Our model shows that the differences in environment are due to radio galaxies being hosted by dark matter haloes that are ~1.5 dex more massive than those hosting radio-quiet galaxies with the same stellar mass. By running a control-simulation in which AGN feedback is switched-off, we identify AGN feedback as the primary mechanism affecting the build-up of the stellar component of radio galaxies, thus explaining the different environment in radio galaxies and their radio-quiet counterparts. The difference in host halo mass between radio loud and radio quiet galaxies translates into different galaxies populating each environment. We predict a higher fraction of passive galaxies around radio loud galaxies compared to their radio-quiet counterparts. Furthermore, such a high fraction of passive galaxies shapes the predicted infrared luminosity function in the environment of radio galaxies in a way that is consistent with observational findings. Our results suggest that the impact of AGN feedback at high redshifts and environmental mechanisms affecting galaxies in high halo masses can be revealed by studying the environment of radio galaxies, thus providing new constraints on galaxy formation physics at high redshifts.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا