ﻻ يوجد ملخص باللغة العربية
We analyse the 2-dimensional distribution and kinematics of the stars as well as molecular and ionised gas in the central few hundred parsecs of 5 active and 5 matched inactive galaxies. The equivalent widths of the Br-gamma line indicate there is no on-going star formation in their nuclei, although recent (terminated) starbursts are possible in the active galaxies. The stellar velocity fields show no signs of non-circular motions, while the 1-0S(1) H_2 kinematics exhibit significant deviations from simple circular rotation. In the active galaxies the H_2 kinematics reveal inflow and outflow superimposed on disk rotation. Steady-state circumnuclear inflow is seen in three AGN, and hydrodynamical models indicate it can be driven by a large scale bar. In three of the five AGN, molecular outflows are spatially resolved. The outflows are oriented such that they intersect, or have an edge close to, the disk - which may be the source of molecular gas in the outflow. The relatively low speeds imply the gas will fall back onto the disk; and with moderate outflow rates, they will have only a local impact on the host galaxy. H_2 was detected in two inactive galaxies. These exhibit chaotic circumnuclear dust morphologies and have molecular structures that are counter-rotating with respect to the main gas component, which could lead to gas inflow in the near future. In our sample, all four galaxies with chaotic dust morphology in the circumnuclear region exist in moderately dense groups with 10-15 members where accretion of stripped gas can easily occur.
Dusty, neutral outflows and inflows are a common feature of nearby star-forming galaxies. We characterize these flows in eight galaxies -- mostly AGN -- selected for their widespread NaI D signatures from the Siding Spring Southern Seyfert Spectrosco
We present new CO(2-1) observations of 3 low-z (~350 Mpc) ULIRG systems (6 nuclei) observed with ALMA at high-spatial resolution (~500 pc). We detect massive cold molecular gas outflows in 5 out of 6 nuclei (0.3-5)x10^8 Msun. These outflows are spati
Theory suggests that there are two primary modes of accretion through which dark matter halos acquire the gas to form and fuel galaxies, hot and cold mode accretion. In cold mode accretion, gas streams along cosmic web filaments to the center of the
The SINFONI survey for Unveiling the Physics and Effect of Radiative feedback (SUPER) aims at tracing and characterizing ionized gas outflows and their impact on star formation in a statistical sample of X-ray selected Active Galactic Nuclei (AGN) at
Aims. We aim to search and characterize inflows and outflows of molecular gas in four ultraluminous infrared galaxies (ULIRGs) at $zsim0.2-0.3$ and one distant QSO at $z=6.13$. Methods. We use Herschel PACS and ALMA Band 7 observations of the hydro