Generic Hamiltonian systems have a mixed phase space where regions of regular and chaotic motion coexist. We present a method for constructing an integrable approximation to such regular phase-space regions including a nonlinear resonance chain. This approach generalizes the recently introduced iterative canonical transformation method. In the first step of the method a normal-form Hamiltonian with a resonance chain is adapted such that actions and frequencies match with those of the non-integrable system. In the second step a sequence of canonical transformations is applied to the integrable approximation to match the shape of regular tori. We demonstrate the method for the generic standard map at various parameters.