ﻻ يوجد ملخص باللغة العربية
Neurons generate magnetic fields which can be recorded with macroscopic techniques such as magneto-encephalography. The theory that accounts for the genesis of neuronal magnetic fields involves dendritic cable structures in homogeneous resistive extracellular media. Here, we generalize this model by considering dendritic cables in extracellular media with arbitrarily complex electric properties. This method is based on a multi-scale mean-field theory where the neuron is considered in interaction with a mean extracellular medium (characterized by a specific impedance). We first show that, as expected, the generalized cable equation and the standard cable generate magnetic fields that mostly depend on the axial current in the cable, with a moderate contribution of extracellular currents. Less expected, we also show that the nature of the extracellular and intracellular media influence the axial current, and thus also influence neuronal magnetic fields. We illustrate these properties by numerical simulations and suggest experiments to test these findings.
Cable theory has been developed over the last decades, usually assuming that the extracellular space around membranes is a perfect resistor. However, extracellular media may display more complex electrical properties due to various phenomena, such as
The ongoing activity of neurons generates a spatially- and time-varying field of extracellular voltage ($V_e$). This $V_e$ field reflects population-level neural activity, but does it modulate neural dynamics and the function of neural circuits? We p
Mounting evidence in neuroscience suggests the possibility of neuronal representations that individual neurons serve as the substrates of different mental representations in a point-to-point way. Combined with associationism, it can potentially addre
Finite-sized populations of spiking elements are fundamental to brain function, but also used in many areas of physics. Here we present a theory of the dynamics of finite-sized populations of spiking units, based on a quasi-renewal description of neu
Neural population equations such as neural mass or field models are widely used to study brain activity on a large scale. However, the relation of these models to the properties of single neurons is unclear. Here we derive an equation for several int