ترغب بنشر مسار تعليمي؟ اضغط هنا

Greenland Telescope Project --- Direct Confirmation of Black Hole with Sub-millimeter VLBI

651   0   0.0 ( 0 )
 نشر من قبل Makoto Inoue Dr.
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A 12-m diameter radio telescope will be deployed to the Summit Station in Greenland to provide direct confirmation of a Super Massive Black Hole (SMBH) by observing its shadow image in the active galaxy M87. The telescope (Greenland Telescope: GLT) is to become one of the Very Long Baseline Interferometry (VLBI) stations at sub-millimeter (submm) regime, providing the longest baseline > 9,000 km to achieve an exceptional angular resolution of 20 micro arc sec at 350 GHz, which will enable us to resolve the shadow size of ~40 micro arc sec. The triangle with the longest baselines formed by the GLT, the Atacama Large Millimeter/submillimeter Array (ALMA) in Chile, and the Submillimeter Array (SMA) in Hawaii will play a key role for the M87 observations. We have been working on the image simulations based on realistic conditions for a better understanding of the possible observed images. In parallel, retrofitting of the telescope and the site developments are in progress. Based on three years of opacity monitoring at 225 GHz, our measurements indicate that the site is excellent for submm observations, comparable to the ALMA site. The GLT is also expected to make single-dish observations up to 1.5 THz.



قيم البحث

اقرأ أيضاً

The GLT project is deploying a new submillimeter (submm) VLBI station in Greenland. Our primary scientific goal is to image a shadow of the supermassive black hole (SMBH) of six billion solar masses in M87 at the center of the Virgo cluster of galaxi es. The expected SMBH shadow size of 40-50 $mu$as requires superbly high angular resolution, suggesting that the submm VLBI would be the only way to obtain the shadow image. The Summit station in Greenland enables us to establish baselines longer than 9,000 km with ALMA in Chile and SMA in Hawaii as well as providing a unique $u$--$v$ coverage for imaging M87. Our VLBI network will achieve a superior angular resolution of about 20 $mu$as at 350 GHz, corresponding to $sim2.5$ times of the Schwarzschild radius of the supermassive black hole in M87. We have been monitoring the atmospheric opacity at 230 GHz since August. 2011; we have confirmed the value on site during the winter season is comparable to the ALMA site thanks to high altitude of 3,200 m and low temperature of $-50degr$C. We will report current status and future plan of the GLT project towards our expected first light on 2015--2016.
A planned rapid submillimeter (submm) Gamma Ray Burst (GRBs) follow-up observations conducted using the Greenland Telescope (GLT) is presented. The GLT is a 12-m submm telescope to be located at the top of the Greenland ice sheet, where the high-alti tude and dry weather porvides excellent conditions for observations at submm wavelengths. With its combination of wavelength window and rapid responding system, the GLT will explore new insights on GRBs. Summarizing the current achievements of submm GRB follow-ups, we identify the following three scientific goals regarding GRBs: (1) systematic detection of bright submm emissions originating from reverse shock (RS) in the early afterglow phase, (2) characterization of forward shock and RS emissions by capturing their peak flux and frequencies and performing continuous monitoring, and (3) detections of GRBs as a result of the explosion of first-generation stars result of GRBs at a high redshift through systematic rapid follow ups. The light curves and spectra calculated by available theoretical models clearly show that the GLT could play a crucial role in these studies.
The Event Horizon Telescope (EHT) recently produced the first horizon-scale image of a supermassive black hole. Expanding the array to include a 3-meter space telescope operating at >200 GHz enables mass measurements of many black holes, movies of bl ack hole accretion flows, and new tests of general relativity that are impossible from the ground.
157 - Ru-Sen Lu 2014
The Event Horizon Telescope (EHT) is a project to assemble a Very Long Baseline Interferometry (VLBI) network of mm wavelength dishes that can resolve strong field General Relativistic signatures near a supermassive black hole. As planned, the EHT wi ll include enough dishes to enable imaging of the predicted black hole shadow, a feature caused by severe light bending at the black hole boundary. The center of M87, a giant elliptical galaxy, presents one of the most interesting EHT targets as it exhibits a relativistic jet, offering the additional possibility of studying jet genesis on Schwarzschild radius scales. Fully relativistic models of the M87 jet that fit all existing observational constraints now allow horizon-scale images to be generated. We perform realistic VLBI simulations of M87 model images to examine detectability of the black shadow with the EHT, focusing on a sequence of model images with a changing jet mass load radius. When the jet is launched close to the black hole, the shadow is clearly visible both at 230 and 345 GHz. The EHT array with a resolution of 20-30$mu$as resolution ($sim$2-4 Schwarzschild radii) is able to image this feature independent of any theoretical models and we show that imaging methods used to process data from optical interferometers are applicable and effective for EHT data sets. We demonstrate that the EHT is also capable of tracing real-time structural changes on a few Schwarzschild radii scales, such as those implicated by VHE flaring activity of M87. While inclusion of ALMA in the EHT is critical for shadow imaging, generally the array is robust against loss of a station.
High-resolution imaging of supermassive black holes is now possible, with new applications to testing general relativity and horizon-scale accretion and relativistic jet formation processes. Over the coming decade, the EHT will propose to add new str ategically placed VLBI elements operating at 1.3mm and 0.87mm wavelength. In parallel, development of next-generation backend instrumentation, coupled with high throughput correlation architectures, will boost sensitivity, allowing the new stations to be of modest collecting area while still improving imaging fidelity and angular resolution. The goal of these efforts is to move from imaging static horizon scale structure to dynamic reconstructions that capture the processes of accretion and jet launching in near real time.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا