ترغب بنشر مسار تعليمي؟ اضغط هنا

The interstellar medium and feedback in the progenitors of the compact passive galaxies at z~2

202   0   0.0 ( 0 )
 نشر من قبل Christina Williams
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Quenched galaxies at z>2 are nearly all very compact relative to z~0, suggesting a physical connection between high stellar density and efficient, rapid cessation of star-formation. We present restframe UV spectra of Lyman-break galaxies (LBGs) at z~3 selected to be candidate progenitors of quenched galaxies at z~2 based on their compact restframe optical sizes and high surface density of star-formation. We compare their UV properties to those of more extended LBGs of similar mass and star formation rate (non-candidates). We find that candidate progenitors have faster ISM gas velocities and higher equivalent widths of interstellar absorption lines, implying larger velocity spread among absorbing clouds. Candidates deviate from the relationship between equivalent widths of Lyman-alpha and interstellar absorption lines in that their Lyman-alpha emission remains strong despite high interstellar absorption, possibly indicating that the neutral HI fraction is patchy such that Lyman-alpha photons can escape. We detect stronger CIV P-Cygni features (emission and absorption) and HeII emission in candidates, indicative of larger populations of metal rich Wolf-Rayet stars compared to non-candidates. The faster bulk motions, broader spread of gas velocity, and Lyman-alpha properties of candidates are consistent with their ISM being subject to more energetic feedback than non-candidates. Together with their larger metallicity (implying more evolved star-formation activity) this leads us to propose, if speculatively, that they are likely to quench sooner than non-candidates, supporting the validity of selection criteria used to identify them as progenitors of z~2 passive galaxies. We propose that massive, compact galaxies undergo more rapid growth of stellar mass content, perhaps because the gas accretion mechanisms are different, and quench sooner than normally-sized LBGs at these early epochs.



قيم البحث

اقرأ أيضاً

162 - Guillermo Barro 2012
We combine high-resolution HST/WFC3 images with multi-wavelength photometry to track the evolution of structure and activity of massive (log(M*) > 10) galaxies at redshifts z = 1.4 - 3 in two fields of the Cosmic Assembly Near-infrared Deep Extragala ctic Legacy Survey (CANDELS). We detect compact, star-forming galaxies (cSFGs) whose number densities, masses, sizes, and star formation rates qualify them as likely progenitors of compact, quiescent, massive galaxies (cQGs) at z = 1.5 - 3. At z > 2 most cSFGs have specific star-formation rates (sSFR = 10^-9 yr^-1) half that of typical, massive SFGs at the same epoch, and host X-ray luminous AGN 30 times (~30%) more frequently. These properties suggest that cSFGs are formed by gas-rich processes (mergers or disk-instabilities) that induce a compact starburst and feed an AGN, which, in turn, quench the star formation on dynamical timescales (few 10^8 yr). The cSFGs are continuously being formed at z = 2 - 3 and fade to cQGs by z = 1.5. After this epoch, cSFGs are rare, thereby truncating the formation of new cQGs. Meanwhile, down to z = 1, existing cQGs continue to enlarge to match local QGs in size, while less-gas-rich mergers and other secular mechanisms shepherd (larger) SFGs as later arrivals to the red sequence. In summary, we propose two evolutionary scenarios of QG formation: an early (z > 2), fast-formation path of rapidly-quenched cSFGs that evolve into cQGs that later enlarge within the quiescent phase, and a slow, late-arrival (z < 2) path for SFGs to form QGs without passing through a compact state.
We examine the fraction of massive ($M_{*}>10^{10} M_{odot}$), compact star-forming galaxies (cSFGs) that host an active galactic nucleus (AGN) at $zsim2$. These cSFGs are likely the direct progenitors of the compact quiescent galaxies observed at th is epoch, which are the first population of passive galaxies to appear in large numbers in the early Universe. We identify cSFGs that host an AGN using a combination of Hubble WFC3 imaging and Chandra X-ray observations in four fields: the Chandra Deep Fields, the Extended Groth Strip, and the UKIDSS Ultra Deep Survey field. We find that $39.2^{+3.9}_{-3.6}$% (65/166) of cSFGs at $1.4<z<3.0$ host an X-ray detected AGN. This fraction is 3.2 times higher than the incidence of AGN in extended star-forming galaxies with similar masses at these redshifts. This difference is significant at the $6.2sigma$ level. Our results are consistent with models in which cSFGs are formed through a dissipative contraction that triggers a compact starburst and concurrent growth of the central black hole. We also discuss our findings in the context of cosmological galaxy evolution simulations that require feedback energy to rapidly quench cSFGs. We show that the AGN fraction peaks precisely where energy injection is needed to reproduce the decline in the number density of cSFGs with redshift. Our results suggest that the first abundant population of massive, quenched galaxies emerged directly following a phase of elevated supermassive black hole growth and further hints at a possible connection between AGN and the rapid quenching of star formation in these galaxies.
We present results from Subaru/FMOS near-infrared (NIR) spectroscopy of 118 star-forming galaxies at $zsim1.5$ in the Subaru Deep Field. These galaxies are selected as [OII]$lambda$3727 emitters at $zapprox$ 1.47 and 1.62 from narrow-band imaging. We detect H$alpha$ emission line in 115 galaxies, [OIII]$lambda$5007 emission line in 45 galaxies, and H$beta$, [NII]$lambda$6584, and [SII]$lambdalambda$6716,6731 in 13, 16, and 6 galaxies, respectively. Including the [OII] emission line, we use the six strong nebular emission lines in the individual and composite rest-frame optical spectra to investigate physical conditions of the interstellar medium in star-forming galaxies at $zsim$1.5. We find a tight correlation between H$alpha$ and [OII], which suggests that [OII] can be a good star formation rate (SFR) indicator for galaxies at $zsim1.5$. The line ratios of H$alpha$/[OII] are consistent with those of local galaxies. We also find that [OII] emitters have strong [OIII] emission lines. The [OIII]/[OII] ratios are larger than normal star-forming galaxies in the local Universe, suggesting a higher ionization parameter. Less massive galaxies have larger [OIII]/[OII] ratios. With evidence that the electron density is consistent with local galaxies, the high ionization of galaxies at high redshifts may be attributed to a harder radiation field by a young stellar population and/or an increase in the number of ionizing photons from each massive star.
We analyze the star-forming and structural properties of 45 massive (log(M/Msun)>10) compact star-forming galaxies (SFGs) at 2<z<3 to explore whether they are progenitors of compact quiescent galaxies at z~2. The optical/NIR and far-IR Spitzer/Hersch el colors indicate that most compact SFGs are heavily obscured. Nearly half (47%) host an X-ray bright AGN. In contrast, only about 10% of other massive galaxies at that time host AGNs. Compact SFGs have centrally-concentrated light profiles and spheroidal morphologies similar to quiescent galaxies, and are thus strikingly different from other SFGs. Most compact SFGs lie either within the SFR-M main sequence (65%) or below (30%), on the expected evolutionary path towards quiescent galaxies. These results show conclusively that galaxies become more compact before they lose their gas and dust, quenching star formation. Using extensive HST photometry from CANDELS and grism spectroscopy from the 3D-HST survey, we model their stellar populations with either exponentially declining (tau) star formation histories (SFHs) or physically-motivated SFHs drawn from semi-analytic models (SAMs). SAMs predict longer formation timescales and older ages ~2 Gyr, which are nearly twice as old as the estimates of the tau models. While both models yield good SED fits, SAM SFHs better match the observed slope and zero point of the SFR-M main sequence. Some low-mass compact SFGs (log(M/Msun)=10-10.6) have younger ages but lower sSFRs than that of more massive galaxies, suggesting that the low-mass galaxies reach the red sequence faster. If the progenitors of compact SFGs are extended SFGs, state-of-the-art SAMs show that mergers and disk instabilities are both able to shrink galaxies, but disk instabilities are more frequent (60% versus 40%) and form more concentrated galaxies. We confirm this result via high-resolution hydrodynamic simulations.
90 - V. Sommariva 2014
The process that quenched star formation in galaxies at intermediate and high redshift is still the subject of considerable debate. One way to investigate this puzzling issue is to study the number density of quiescent galaxies at z~2, and its depend ence on mass. Here we present the results of a new study based on very deep Ks-band imaging (with the HAWK-I instrument on the VLT) of two HST CANDELS fields (the UKIDSS Ultra-deep survey (UDS) field and GOODS-South). The new HAWK-I data (taken as part of the HUGS VLT Large Program) reach detection limits of Ks>26 (AB mag). We select a sample of passively-evolving galaxies in the redshift range 1.4<z<2.5. Thanks to the depth and large area coverage of our imaging, we have been able to extend the selection of quiescent galaxies a magnitude fainter than previous analyses. Through extensive simulations we demonstrate, for the first time, that the observed turn-over in the number of quiescent galaxies at K>22 is real. This has enabled us to establish unambiguously that the number counts of quiescent galaxies at z~2 flatten and slightly decline at magnitudes fainter than Ks~22(AB mag.). We show that this trend corresponds to a stellar mass threshold $M_*10^{10.8},{rm M_{odot}}$ below which the mechanism that halts the star formation in high-redshift galaxies seems to be inefficient. Finally we compare the observed pBzK number counts with those of quiescent galaxies extracted from four different semi-analytic models. We find that none of the models provides a statistically acceptable description of the number density of quiescent galaxies at these redshifts. We conclude that the mass function of quiescent galaxies as a function of redshift continues to present a key and demanding challenge for proposed models of galaxy formation and evolution.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا