ﻻ يوجد ملخص باللغة العربية
We report resistivity measurements of the helimagnet CrAs under pressures. The helimagnetic transition with T_N ~ 265 K at ambient pressure is completely suppressed above a critical pressure of P_c ~ 0.7 GPa, and superconductivity is observed at ~2.2 K for zero resistance, which exists in a wide pressure range extending beyond 3 GPa. Both the upper critical field H_{c2} and the coefficient A in the resistivity increase toward P_c, suggesting that the superconductivity of CrAs is mediated by electronic correlations enhanced in the vicinity of the helimagnetic phase.
The recent discovery of pressure induced superconductivity in the binary helimagnet CrAs has attracted much attention. How superconductivity emerges from the magnetic state and what is the mechanism of the superconducting pairing are two important is
The discovery of superconductivity in the heavy-fermion paramagnet UTe$_2$ has attracted a lot of attention, particularly due to the reinforcement of superconductivity near pressure- and magnetic-field-induced magnetic quantum phase transitions. A ch
A huge enhancement of the superconducting transition temperature Tc was observed in tetragonal FeSe superconductor under high pressure. The onset temperature became as high as 27 K at 1.48 GPa and the pressure coefficient showed a huge value of 9.1 K
The discovery of high-temperature conventional superconductivity in H3S with a critical temperature of Tc=203 K was followed by the recent record of Tc ~250 K in the face-centered cubic (fcc) lanthanum hydride LaH10 compound. It was realized in a new
We present a high-pressure NMR study of the overdoped iron pnictide superconductor NaFe$_{0.94}$Co$_{0.06}$As. The low-energy antiferromagnetic spin fluctuations in the normal state, manifest as the Curie-Weiss upturn in the spin-lattice relaxation r