ﻻ يوجد ملخص باللغة العربية
The study of scattering processes in few body systems is a difficult problem especially if long range interactions are involved. In order to solve such problems, we develop here a potential-splitting approach for three body systems. This approach is based on splitting the reaction potential into a finite range core part and a long range tail part. The solution to the Schrodinger equation for the long range tail Hamiltonian is found analytically, and used as an incoming wave in the three body scattering problem. This reformulation of the scattering problem makes it suitable for treatment by the exterior complex scaling technique in the sense that the problem after the complex dilation is reduced to a boundary value problem with zero boundary conditions. We illustrate the method with calculations on the electron scattering off the hydrogen atom and the positive helium ion in the frame of the Temkin-Poet model.
Although the convergent close-coupling (CCC) method has achieved unprecedented success in obtaining accurate theoretical cross sections for electron-atom scattering, it generally fails to yield converged energy distributions for ionization. Here we r
In order to describe few-body scattering in the case of the Coulomb interaction, an approach based on splitting the reaction potential into a finite range part and a long range tail part is presented. The solution to the Schrodinger equation for the
An approach based on splitting the reaction potential into a finite range part and a long range tail part to describe few-body scattering in the case of a Coulombic interaction is proposed. The solution to the Schrodinger equation for the long range
The electron detachment from the hydrogen negative ion in strong fields is studied using the two-electron and different single-electron models within the quasistatic approximation. A special attention is payed to over-the-barrier regime where the Sta
The S-wave model of electron-hydrogen scattering is evaluated using the convergent close-coupling method with an emphasis on scattering from excited states including an initial state from the target continuum. Convergence is found for discrete excita