ﻻ يوجد ملخص باللغة العربية
We present Gran Telescopio CANARIAS CanariCam 8.7$mu$m imaging and 7.5-13$mu$m spectroscopy of six local systems known to host an active galactic nucleus (AGN) and have nuclear star formation. Our main goal is to investigate whether the molecules responsible for the 11.3$mu$m polyclyclic aromatic hydrocarbon (PAH) feature are destroyed in the close vicinity of an AGN. We detect 11.3$mu$m PAH feature emission in the nuclear regions of the galaxies as well as extended PAH emission over a few hundred parsecs. The equivalent width (EW) of the feature shows a minimum at the nucleus but increases with increasing radial distances, reaching typical star-forming values a few hundred parsecs away from the nucleus. The reduced nuclear EW are interpreted as due to increased dilution from the AGN continuum rather than destruction of the PAH molecules. We conclude that at least those molecules responsible for the 11.3$mu$m PAH feature survive in the nuclear environments as close as 10pc from the AGN and for Seyfert-like AGN luminosities. We propose that material in the dusty tori, nuclear gas disks, and/or host galaxies of AGN is likely to provide the column densities necessary to protect the PAH molecules from the AGN radiation field.
The PAH model predicts many weak emission features in the 1-5 $mu$m region that can resolve significant questions that it has faced since its inception in the mid-80s. These features contain fundamental information about the PAH population that is in
In order to better understand how active galactic nuclei (AGN) effect the interstellar media of their host galaxies, we perform a meta-analysis of the CO emission for a sample of $z=0.01-4$ galaxies from the literature with existing CO detections and
We use mid-infrared spectroscopy of unobscured active galactic nuclei (AGNs) to reveal their native dusty environments. We concentrate on Seyfert 1 galaxies, observing a sample of 31 with the Infrared Spectrograph aboard the Spitzer Space Telescope,
For nearly seven decades astronomers have been studying active galaxies, that is to say galaxies with actively accreting central supermassive black holes, AGN. A small fraction of these are characterized by luminous, powerful radio emission: this cla
We present high-resolution mid-infrared (MIR) imaging, nuclear spectral energy distributions (SEDs) and archival Spitzer spectra for 22 low-luminosity active galactic nuclei (LLAGN; Lbol lesssim 10^42 erg/sec). Infrared (IR) observations may advance