ترغب بنشر مسار تعليمي؟ اضغط هنا

Generation of tunable entanglement and violation of a Bell-like inequality between different degrees of freedom of a single photon

135   0   0.0 ( 0 )
 نشر من قبل Adam Valles Mr.
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We demonstrate a scheme to generate noncoherent and coherent correlations, i.e., a tunable degree of entanglement, between degrees of freedom of a single photon. Its nature is analogous to the tuning of the purity (first-order coherence) of a single photon forming part of a two-photon state by tailoring the correlations between the paired photons. Therefore, well-known tools such as the Clauser-Horne-Shimony-Holt (CHSH) Bell-like inequality can also be used to characterize entanglement between degrees of freedom. More specifically, CHSH inequality tests are performed, making use of the polarization and the spatial shape of a single photon. The four modes required are two polarization modes and two spatial modes with different orbital angular momentum.



قيم البحث

اقرأ أيضاً

We demonstrate hybrid entanglement of photon pairs via the experimental violation of a Bell inequality with two different degrees of freedom (DOF), namely the path (linear momentum) of one photon and the polarization of the other photon. Hybrid entan gled photon pairs are created by Spontaneous Parametric Down Conversion and coherent polarization to path conversion for one photon. For that photon, path superposition is analyzed, and polarization superposition for its twin photon. The correlations between these two measurements give an S-parameter of S=2.653+/-0.027 in a CHSH inequality and thus violate local realism for two different DOF by more than 24 standard deviations. This experimentally supports the idea that entanglement is a fundamental concept which is indifferent to the specific physical realization of Hilbert space.
161 - Lixiang Chen , Weilong She 2009
Single photons emerging from q-plates (or Pancharatnam-Berry phase optical element) exhibit entanglement in the degrees of freedom of spin and orbital angular momentum. We put forward an experimental scheme for probing the spin-orbit correlations of single photons. It is found that the Clauser-Horne-Shimony-Holt (CHSH) parameter S for the single-photon spin-orbit entangled state could be up to 2.828, evidently violating the Bell-like inequality and thus invalidating the noncontextual hidden variable (NCHV) theories.
In this paper, photonic entanglement and interference are described and analyzed with the language of quantum information process. Correspondingly, a photon state involving several degrees of freedom is represented in a new expression based on the pe rmutation symmetry of bosons. In this expression, each degree of freedom of a single photon is regarded as a qubit and operations on photons as qubit gates. The two-photon Hong-Ou-Mandel interference is well interpreted with it. Moreover, the analysis reveals the entanglement between different degrees of freedom in a four-photon state from parametric down conversion, even if there is no entanglement between them in the two-photon state. The entanglement will decrease the state purity and photon interference visibility in the experiments on a four-photon polarization state.
We report the measurement of a Bell inequality violation with a single atom and a single photon prepared in a probabilistic entangled state. This is the first demonstration of such a violation with particles of different species. The entanglement cha racterization of this hybrid system may also be useful in quantum information applications.
Here we demonstrate, for the first time, violation of Bells inequality using a triggered quantum dot photon-pair source without post-selection. Furthermore, the fidelity to the expected Bell state can be increased above 90% using temporal gating to r eject photons emitted at times when collection of uncorrelated light is more probable. A direct measurement of a CHSH Bell inequality is made showing a clear violation, highlighting that a quantum dot entangled photon source is suitable for communication exploiting non-local quantum correlations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا