ﻻ يوجد ملخص باللغة العربية
A sample of 1.53$times$10$^{9}$ cosmic-ray-induced single muon events has been recorded at 225 meters-water-equivalent using the MINOS Near Detector. The underground muon rate is observed to be highly correlated with the effective atmospheric temperature. The coefficient $alpha_{T}$, relating the change in the muon rate to the change in the vertical effective temperature, is determined to be 0.428$pm$0.003(stat.)$pm$0.059(syst.). An alternative description is provided by the weighted effective temperature, introduced to account for the differences in the temperature profile and muon flux as a function of zenith angle. Using the latter estimation of temperature, the coefficient is determined to be 0.352$pm$0.003(stat.)$pm$0.046(syst.).
We have searched for sidereal variations in the rate of antineutrino interactions in the MINOS Near Detector. Using antineutrinos produced by the NuMI beam, we find no statistically significant sidereal modulation in the rate. When this result is pla
We report the first direct observation of muon antineutrinos in the MINOS Far Detector in the current muon-neutrino dominated beam. The magnetic field of the detector is utilized to separate muon neutrinos and antineutrinos event-by-event by identify
We report the first observation of seasonal modulations in the rates of cosmic ray multiple-muon events at two underground sites, the MINOS Near Detector with an overburden of 225 mwe, and the MINOS Far Detector site at 2100 mwe. At the deeper site,
This letter reports results from the MINOS experiment based on its initial exposure to neutrinos from the Fermilab NuMI beam. The rate and energy spectra of charged current muon neutrino interactions are compared in two detectors located along the be
A hydrogen-like atom consisting of a positive muon and an electron is known as muonium. It is a near-ideal two-body system for a precision test of bound-state theory and fundamental symmetries. The MuSEUM collaboration performed a new precision measu