ﻻ يوجد ملخص باللغة العربية
We report on the group delay observed in continuous-wave terahertz spectroscopy based on photomixing with phase-sensitive homodyne detection. We discuss the different contributions of the experimental setup to the phase difference Deltaphi( u) between transmitter arm and receiver arm. A simple model based on three contributions yields a quantitative description of the overall behavior of Deltaphi( u). Firstly, the optical path-length difference gives rise to a term linear in frequency. Secondly, the ultra-wideband log-spiral antennae effectively radiate and receive in a frequency-dependent active region, which in the most simple model is an annular area with a circumference equal to the wavelength. The corresponding term changes by roughly 6 pi between 100 GHz and 1 THz. The third contribution stems from the photomixer impedance. In contrast, the derivative (dDeltaphi / d u) is dominated by the contribution of periodic modulations of Deltaphi( u) caused by standing waves, e.g., in the photomixers Si lenses. Furthermore, we discuss the Fourier-transformed spectra, which are equivalent to the waveform in a time-domain experiment. In the time domain, the group delay introduced by the log-spiral antennae gives rise to strongly chirped signals, in which low frequencies are delayed. Correcting for the contributions of antennae and photomixers yields sharp peaks or pulses and thus facilitates a time-domain-like analysis of our continuous-wave data.
Benefiting from tens of GHz bandwidth, terahertz (THz) communication is considered to be a promising technology to provide ultra-high speed data rates for future 6G wireless systems. To compensate for the serious propagation attenuation of THz signal
Terahertz time-domain spectroscopy (THz TDS) is a well-known tool for material analysis in the terahertz frequency band. One crucial system component in every time-domain spectrometer is the delay line which is necessary to accomplish the sampling of
We show that it is possible to achieve a perfect impedance matching by designing an antireflection temporal medium, which is omnidirectional and frequency-independent in an ultra-wide band. Our approach is an extension of the antireflection temporal
An analytic solution for Bragg grating with linear chirp in the form of confluent hypergeometric functions is analyzed in the asymptotic limit of long grating. Simple formulas for reflection coefficient and group delay are derived. The simplification
We developed THz-resonant scanning probe tips, yielding strongly enhanced and nanoscale confined THz near fields at their tip apex. The tips with length in the order of the THz wavelength ({lambda} = 96.5 {mu}m) were fabricated by focused ion beam (F