ﻻ يوجد ملخص باللغة العربية
Galaxies are believed to evolve through merging, which should lead to multiple supermassive black holes in some. There are four known triple black hole systems, with the closest pair being 2.4 kiloparsecs apart (the third component is more distant at 3 kiloparsecs), which is far from the gravitational sphere of influence of a black hole with mass $sim$10$^9$ M$_odot$ (about 100 parsecs). Previous searches for compact black hole systems concluded that they were rare, with the tightest binary system having a separation of 7 parsecs. Here we report observations of a triple black hole system at redshift z=0.39, with the closest pair separated by $sim$140 parsecs. The presence of the tight pair is imprinted onto the properties of the large-scale radio jets, as a rotationally-symmetric helical modulation, which provides a useful way to search for other tight pairs without needing extremely high resolution observations. As we found this tight pair after searching only six galaxies, we conclude that tight pairs are more common than hitherto believed, which is an important observational constraint for low-frequency gravitational wave experiments.
Quasars have long been known to be variable sources at all wavelengths. Their optical variability is stochastic, can be due to a variety of physical mechanisms, and is well-described statistically in terms of a damped random walk model. The recent av
We identify SDSS J153636.22+044127.0, a QSO discovered in the Sloan Digital Sky Survey, as a promising candidate for a binary black hole system. This QSO has two broad-line emission systems separated by 3500 km/sec. The redder system at z=0.3889 also
We report on the discovery of a supermassive binary black hole system in the radio galaxy 0402+379, with a projected separation between the two black holes of just 7.3 pc. This is the closest black hole pair yet found by more than two orders of magni
One of the most intriguing scenarios proposed to explain how active galactic nuclei are triggered involves the existence of a supermassive binary black hole system in their cores. Here we present an observational evidence for the first spectroscopica
In this paper we consider a scenario where the currently observed hypervelocity stars in our Galaxy have been ejected from the Galactic center as a result of dynamical interactions with an intermediate-mass black hole (IMBH) orbiting the central supe