ﻻ يوجد ملخص باللغة العربية
Approximately half of the nearby E+A galaxies followed up with 21-cm observations have detectable HI emission. The optical spectra of these galaxies show strong post-starburst stellar populations but no optical emission lines implying star-formation is not ongoing despite the presence of significant gas reservoirs. We have obtained integral field spectroscopic follow up observations of the two brightest, and nearest, of the six E+A galaxies with HI 21-cm emission in the recent sample of Zwaan et al. (2013). In the central regions of both galaxies the observations are consistent with a post-starburst population with little emission. However, outside the central regions both galaxies have strong optical emission lines, with a clumpy or knot-like distribution, indicating ongoing star-formation. We conclude that in these two cases the presence of optical spectra lacking evidence for star-formation while a large gas mass is present can be explained by an aperture effect in selecting the nearby E+A galaxies using single-fibre spectroscopy that probes only the galaxy core.
We present three dimensional spectroscopy of eleven E+A galaxies, selected for their strong H-delta absorption but weak (or non-existent) [OII]3727 and H-alpha emission. This selection suggests that a recent burst of star-formation was triggered but
The extreme infrared (IR) luminosity of local luminous and ultra-luminous IR galaxies (U/LIRGs; 11 < log LIR /Lsun < 12 and log LIR /Lsun > 12, respectively) is mainly powered by star-formation processes triggered by mergers or interactions. While U/
Using data taken as part of the Bluedisk project we study the connection between neutral hydrogen (HI) in the environment of spiral galaxies and that in the galaxies themselves. We measure the total HI mass present in the environment in a statistical
We investigate the 2D excitation structure of the ISM in a sample of LIRGs and Seyferts using near-IR IFS. This study extends to the near-IR the well-known optical and mid-IR emission line diagnostics used to classify activity in galaxies. Based on t
We present and explore the resolved atomic hydrogen (HI) content of 13 HI-rich and late-type dominated groups denoted `Choirs. We quantify the HI content of the Choir galaxies with respect to the median of the HI-mass fraction ($f_{textrm{HI}}$) of t